

SECTION I. OVERVIEW ON REQUEST FOR PROPOSAL

A. Navajo Tribal Utility Authority (NTUA) is a non-for-profit, multi-utility enterprise of the Navajo Nation which provides electric, water, wastewater, natural gas, photovoltaic, and telecommunication services covering approximately 27,000 square miles across northeastern Arizona, northwestern New Mexico and Utah. NTUA has seven main district offices located in strategic communities spanning the Navajo Reservation, with its corporate headquarters located in Fort Defiance, Arizona.

<u>Type of Service</u>: to provide, pilot test, and subsequently purchase a reverse osmosis (RO) treatment system for a public drinking water system in Halchita, Utah.

B. Schedule of Activities:

- 1. Advertisement Period
- 2. Mandatory Pre-Proposal Meeting

February 1 – 21, 2017

- Proposal Meeting February 9, 2017 @ 2:00 p.m. (DST)
- NTUA Deputy General Manager's Building (Large Conference Room)
 Fort Defiance, Arizona
- Call-In Information:
 - Dial number: (928) 729-6242
 - Enter access code: 0115507
- Questions Due to NTUA
 Answers to Questions
 Proposal Due to NTUA
 Evaluation of Proposals
 Execution of Contract
 February 13, 2017
 February 15, 2017
 February 22, 2017 @ 5:00 p.m. (DST)
 February 23 28, 2017
 March 1, 2017
- C. Inquiries: All questions must be submitted in writing to Avis Jimm, Contract Administrator, at (928) 729-6243 or via email at avisj@ntua.com. NTUA will only respond to questions related to this RFP prior to the date indicated above. All such emails should have "Halchita Water Treatment System QUESTIONS" in the subject line.
- Proposal and Cost shall each be submitted in separate sealed envelopes clearly marked as follows: <u>for the Proposal</u> "DO NOT OPEN HALCHITA WATER TREATMENT SYSTEM (PROPOSAL)" and <u>for the Cost</u> "DO NOT OPEN HALCHITA WATER TREATMENT SYSTEM" (COST)" received by February 22, 2017 @ 5:00 p.m. (DST) at the following destination:

AN ENTERPRISE OF THE NAVAJO NATION

PHYSICAL ADDRESS:

Navajo Tribal Utility Authority ATTN: Avis Jimm, Purchasing Department North Navajo Route 12 (Fed Ex/UPS) Fort Defiance, Arizona 86504

- E. Proposal submission, firms must submit as required:
 - An Original proposal (marked 'Original') with one (1) electronic copy on flash drive identical to the original by the due date at the address provided above. Any supporting documentation and supplemental information may be included in subsequent appendices. Each page of the proposal shall include the company name and page numbering. All proposals shall be submitted using standard 8½ x 11 inch paper, printed double-sided and organized with tabs delineating each criteria as noted in Section II. Proposal Evaluation Criteria. Length of the proposal shall be limited to a maximum of twenty-five (25) numbered pages of text no smaller than 11 point, and/or graphics.
 - 2. One Original cost (marked 'Original' and to not be included on the flash drive) in a separate sealed envelope to be opened only after determination the PROPOSAL satisfies the requirements of this RFP. Each page of the cost shall include the company name and page numbering. The cost must be firm and cannot be increased, unless there is a change in NTUA requirements after the RFP submission, once a firm is selected.
 - 3. Ensure the proposal response is properly labeled on the outer part of the shipping package (hand-delivered, FedEx, or UPS). NTUA will not be responsible for the premature opening of proposal responses which have not been properly labeled.
- F. Proposers mailing their proposals shall allow sufficient time for delivery to ensure receipt by the due date and time. Late, facsimiled, or electronic mailed proposals will not be accepted.
- G. Only responsive proposals will be considered for award. In order for a proposal to be considered responsive, the proposal and cost must address the items listed in Section II, Proposal Evaluation Criteria.
- H. Addendum to the proposal: In the event it becomes necessary to revise any part of the proposal, the Contract Administrator shall issue a written addendum on the specifics of the change and inform all concerned. **Proposers shall ensure a signed copy of acknowledgment of any addendum is included with the proposal**.

- I. All costs incurred by the proposer in preparing and responding to this solicitation are the sole responsibility of the proposer. Any proposal submitted pursuant to this solicitation is at the sole risk and responsibility of the party submitting such proposal.
- J. Rejection of Proposals: NTUA reserves the right to reject any or all proposals and to waive informalities in the proposals received whenever such rejection or waiver is in the best interest of NTUA. NTUA reserves the right to reject any proposal based on deficient past performance, including projects conducted with NTUA, other Navajo Nation agencies, the federal, state or local governments, or any commercial project.
- K. NTUA reserves the right to select more than one winning proposal. NTUA will select the winning proposal(s) on a best value basis, not strictly on a cost basis analysis e.g., the lowest cost, will be selected. As described in Section II – Proposal Evaluation Criteria and Section III – Scope of Work, the winning proposer(s) will best meet these evaluation criteria's, including, but not limited to, qualification, past performance, timeline to complete project, and cost. A successful proposer(s) is expected to perform at a high level to meet NTUA's contractual requirements.
- L. Contractual Clauses: In order for NTUA to contract for services of this nature, the successful Proposer must agree to include as part of the Agreement the following two clauses:
 - 1. Governing Law: The governing law and dispute jurisdiction will be the Navajo Nation Law and Courts. No provision of the contract shall constitute a waiver of sovereign immunity of the Navajo Nation.
 - 2. Navajo Nation Sales Tax: The successful Proposer shall include the Navajo Nation 5% tax within their cost proposal. It will be the successful proposer's responsibility to pay the sales receipt tax to the Navajo Nation.
- M. Award of Contract: Upon selection, a purchase order, together with a negotiated agreement of the terms and conditions (Agreement) will be prepared between NTUA and the successful proposer. The proposal submitted by the proposer(s) may also become part of the contract.
- N. Preference will be made in accordance with the Navajo Business and Procurement Act (12 N.N.C. § 1501 et seq.); the Navajo Nation Procurement Act (12 N.N.C. § 301 et seq.); the Navajo Nation Business Opportunity Act (5 N.N.C. § 201 et seq.) and other applicable statutory and regulatory requirements. Proposers shall submit evidence of their Preference Priority Certification if applicable.

- O. NTUA Liability: The proposer agrees to indemnify, defend and hold harmless NTUA and its officers, agents, employees, community representatives and volunteers from any and all claims, judgments, losses, damages, payments, costs, and expenses of every nature and description, including attorney's fees, arising out of or resulting from the proposer's negligent performance of work, as described in any Agreement resulting from the RFP.
- Ρ. Cost must be accompanied by proposal security made payable to Owner in an amount of 5% of proposer's maximum cost price and in the form of a certified check or a proposal bond (EJCDC No. C-430, 2007 Edition) issued by a surety meeting the requirement of paragraphs 5.01 and 5.02 of the General Conditions. The proposal security of the successful proposer will be retained until such proposer has executed the contract documents, furnished the required contract security and met the other conditions of the Notice of Award, whereupon the proposal security will be returned. If the successful proposer fails to execute and deliver the contract documents and furnish the required contract security within 15 days after the Notice of Award, Owner may annul the Notice of Award and the proposal security of the proposer will be forfeited. The proposal security of other proposers whom Owner believes to have a reasonable chance of receiving the award may be retained by Owner until the earlier of seven days after the effective date of the agreement or 61 days after the proposal opening, whereupon proposal security furnished by such proposers will be returned. Proposal security of other proposers whom OWNER believes do not have a reasonable chance of receiving the award will be returned within seven days after the proposal opening.

SECTION II. PROPOSAL EVALUATION CRITERIA

A. **40 Points: Firm's Qualification**.

- 1. Provide the name of Project Manager to be in charge of this project, including their professional qualifications, experience, and a statement indicating the tasks he/she will perform.
- 2. Provide evidence the firm is capable to perform the required Scope of Work.

B. **40 Points: Past Work Experience of the Firm.**

- 1. Provide Three (3) examples of prior or current projects in which the similar Scope of Work was performed.
- 2. *If applicable*, provide two (2) examples of past performance on contracts with the Navajo Nation; in terms of mobilization, cost control, quality of work, compliance with performance schedules, and satisfactory performance of services provided.
- C. **10 Points: Navajo Preference.** Provide proof of the Navajo Preference certification from the Navajo Nation Division of Economic Development. Points shall be awarded as following:
 - 1. Priority 1: 10 points
 - 2. Priority 2: 5 points
- D. **5 Points: Financial Capability of the Firm.** Provide evidence of the financial capability to perform the required scope of work within the required timeframes.
 - 1. Provide evidence the proposer has the financial capability to perform the required Scope of Work, as well as the technical and administrative support to complete within the required time frames.
 - 2. Provide latest financial statement (official accounting statement), audited if available, including the primary proposer's latest balance sheet and income statements defining the following:
 - Current assets; Net Fixed Assets; Other Assets; Current Liabilities
 - 3. Provide the name of the entity preparing the financial statement and date thereof if the Financial Statement is not audited.

Note: If financial statement is not for the identical organization named herein, explain the relationship and financial responsibility of the organization furnished.

- E. **5 Points: Proof of Insurance**. Provide evidence of insurance coverage and shall name NTUA as additionally insured; a "*sample*" copy will not be acceptable:
 - 1. Worker's Compensation;
 - 2. General Property Liability;
 - 3. \$1,000,000 Professional Liability Insurance; and
 - 4. Motor Vehicle and/or other mode of transportation.

SECTION III. SCOPE OF WORK

Project Description:

To provide, pilot test, and purchase a reverse osmosis (RO) treatment system for a public drinking water system in Halchita, Utah. The water source is an existing well next to the San Juan River near the existing Halchita surface water treatment plant (WTP). NTUA's intent is to replace the existing WTP with a new Reverse Osmosis (RO) treatment system and utilize existing facilities to convey the treated water to the storage and distribution system. It is understood that a proposed RO treatment system will need to include pre-treatment. Treated water must meet public drinking water standards. Figure 1 shows the location of the Halchita WTP and the community of Halchita.

Background Information:

The Halchita WTP is a traditional surface water treatment plant with feed tank and presedimentation basin, coagulation/flocculation/sedimentation, media filter, and clearwell. Figure 2 shows the plan view and schematic of existing plant process. Water is pumped from the clearwell to two 187,635 gallon storage tanks (a distance of approximately 2 miles). The two tanks feed the distribution system that services the community of Halchita. The maximum day water demand for the system is 36,645 gallons/day (25.44 gpm). The average day demand is 20,360 gallons/day (14.11 gpm). Issues with the intake structure and fluctuations in the river water quantity and quality have caused NTUA to look for other viable options to supply drinking water to Halchita. The WTP is not in operation at this time and potable water is currently being hauled to the community of Halchita.

A well was drilled near the Halchita WTP next to the San Juan River in 2015 with the intent that groundwater would be used as the source for the Halchita water system. The well was pump tested at 80 gpm and water samples were taken on December 8, 2016 and December 16, 2016. The results of the tests show that the water is high in TDS, over 3,400 mg/L, and the turProposality is greater than 20 NTU. Water Quality test results of the samples taken on the 8th and 16th of December are included in the Appendix. The pump was pulled and the well is currently capped.

Scope of Work:

1. **Provide RO Treatment System.** Proposer will provide RO treatment system. It is assumed that the RO treatment system will include pre-treatment process equipment. Throughout the Scope of Work, RO treatment system infers all equipment and components for RO processing, pre-treatment, and system cleaning, maintenance, and proper handling of waste materials in coordination with NTUA.

- a. The RO treatment system shall be complete with all pumps, tanks, compressors, strainers, and other ancillary systems needed for full operation during the pilot testing and anticipated future long term operation. Proposer will provide all maintenance equipment and chemicals required to maintain the treatment system. RO treatment system will be delivered by proposer to Halchita WTP site.
 - i. NTUA will provide and install well pump and connect to RO treatment system. NTUA will connect power and conduct SCADA programing. Proposer will ensure that all connections for power, SCADA, and plumbing are made in an appropriate manner to conduct the pilot test and are sufficient for future long term operation. Figure 3 shows a schematic of proposer provided system and NTUA provided system.
 - ii. Proposer will provide the RO Treatment System inlet pressure requirements in their proposal. This will be used to determine the well pump head requirements.
- b. Develop Treatment System Process Schematic. Proposer will develop a treatment process that will produce potable water to be non-scale forming, non-corrosive (assumes that a small flow of pretreated water will be combined with RO treated water for corrosion control and to improve taste of water), and meet public drinking water standards (both primary and secondary standards). Proposer will provide a treatment system process schematic that will treat and provide a treated product flow of 25 gpm and have the ability to expand to provide a treated product flow of 60 gpm in the future. The total pressure loss for the complete treatment process shall be less than 50 psi.
 - i. The schematic will show the proposer provided system to include pre-treatment requirements and facilities, cleaning and maintenance systems, and indicate what existing facilities and piping associated with the existing WTP will be utilized.
 - ii. Dimensions (height, length, and width) of RO treatment and Pre-Treatment system will be provided along with any associated tanks, piping, etc.
- c. A complete description of the operation of the treatment system will be provided. At a minimum the documentation will include a flow schematic of the process, tabulation of operating parameters, description of each unit process and mode of operation (filtration, backwash, daily chemical clean, clean-in-place.) instrumentation and controls. This documentation will become part of the data record for the testing program.

- d. Provide Reject Water Flow Rate. Provide flow rate of reject water from treatment system for a product flow rate of 25 gpm and future product flow rate of 60 gpm. NTUA anticipates that reject water will discharge to existing evaporation ponds during pilot testing.
- e. Provide Plumbing and Power Supply Requirements. Proposer will provide plumbing and power supply requirements to connect the RO treatment system such that well water will be supplied to the proposed RO treatment system. Power requirements will include what is needed to run the treatment system and allow for SCADA integration. Proposer will recommend head requirements for pre-treatment and RO pump suction operation.
- 2. **Install RO Treatment System.** Proposer will coordinate and assist with the installation of the RO treatment system in the existing Water Treatment Building. This will include: coordinating location for installation, coordination of power connection; integrating treatment system and well controls; plumbing installation from well to treatment system and discharges from treatment system to clear well and waste discharge; and any other requirements to ensure that the RO treatment system functions properly.
- 3. **Provide RO Treatment System Pilot.** Conduct Process Piloting. Proposer will pilot RO treatment system for a period of four (4) weeks. During the pilot test the proposer will collect samples and conduct laboratory analysis. Results of analysis will be provided to NTUA. Proposer will support all requirements to conduct process piloting.
- 4. **Provide RO Treatment System Operator Training.** Proposer will provide operator training, operations manual, and as built drawings to ensure that NTUA can operate the RO treatment system. Initial operator training will be conducted prior to pilot study to ensure that NTUA staff are proficient to conduct required operations during pilot. Additional operator training will be conducted after successful pilot to ensure NTUA staff are proficient and can conduct long term operations of the RO Treatment System.
- 5. **Provide RO Treatment System Operations Support.** Proposer will provide a one year performance guarantee to NTUA. This will include providing on site assistance to troubleshoot and resolve treatment system operating issues.

Additional Information and assumptions:

- NTUA will provide connection from well to the inlet of the proposer provided treatment system and to the outlet of the treatment system.
- After proposer selection NTUA will meet with selected proposer to review power requirements, treatment system control requirements with integration of well pump, and coordinate installation roles and responsibilities.
- During pilot test NTUA's intent is that product water will be discharged to the San Juan River, reject water will be discharged to existing evaporation ponds.
- NTUA will coordinate and prepare all permits for discharge of the treated and reject water during the pilot study and future long term operation.
- Proposer will notify NTUA of additional water quality data that is required to prepare a proposal for submittal. Proposer shall ensure they understand how mineralized the well water is.

Summarized Halchita Well Water Quality Data:

Well Wet Chemistry Results (Collected 12/8/15)								
Parameter	Results	Units						
Laboratory pH	7.14							
TurProposality	20.8	NTU						
Total Suspended Solids	12.8	mg/L						
T. Alkalinity (CaCO3)	412	mg/L						
Total Hardness	1,510	mg/L						
Calcium	536	mg/L						
Calcium (CaCO3)	1,340	mg/L						
Magnesium	41.34	mg/L						
Magnesium (CaCO3)	170	mg/L						
Dissolved Solids	3,470	mg/L						
Chloride ICS2000	171	mg/L						
Fluoride ICS2000	0.60	mg/L						
Phosphate ICS2000	< 0.3	mg/L						
Sulfate ICS2000	1,880	mg/L						
Nitrate	< 0.3	mg/L						
Nitrite	< 0.3	mg/L						

Well Heavy Metals Results (Collected 12/8/15)								
Parameter	Results	Units						
Arsenic	< 0.003	mg/L						
Barium	0.009	mg/L						
Cadmium	< 0.001	mg/L						
Chromium	< 0.006	mg/L						
Copper	< 0.006	mg/L						
Iron	0.018	mg/L						
Lead	< 0.001	mg/L						
Manganese	0.250	mg/L						

AN ENTERPRISE OF THE NAVAJO NATION

Mercury	Not analyzed	mg/L
Selenium	< 0.003	mg/L
Sodium	412	mg/L
Potassium	7.46	mg/L
Nickel	0.012	mg/L
Zinc	0.020	mg/L
Antimony	< 0.003	mg/L
Beryllium	< 0.001	mg/L
Thallium	< 0.0007	mg/L

Well Radiochemical Activity Results (Collected 12/8/15)									
Parameter	Results	Units							
Gross Alpha Activity	13.6 <u>+</u> 1.0	pCi/L							
Uranium Activity	2.7 <u>+</u> 0.6	pCi/L							
Adjusted Gross Alpha	10.9 <u>+</u> 1.2	pCi/L							
Radium 226 Activity	2.5 <u>+</u> 0.3	pCi/L							
Radium 228 Activity	< 0.9	pCi/L							
Total Radium	2.5 <u>+</u> 0.3	pCi/L							
Uranium 234	0.00022 <u>+</u> 0.00005	ug/L							
Uranium 235	0.027 <u>+</u> 0.001	ug/L							
Uranium 238	3.8 <u>+</u> 0.8	ug/L							
Total Uranium	3.8 <u>+</u> 0.8	ug/L							

Figures:

Figure 1 – Halchita Well and WTP Location

Figure 2 – Existing WTP Plan & Schematic

Figure 3 – Proposer Provided System – NTUA Provided System Schematic

Appendix:

Appendix A – Lab Report Data

Appendix B – Navajo Nation EPA Primary and Secondary Drinking Water Standards

AN ENTERPRISE OF THE NAVAJO NATION

Figure 1 – Halchita Well and WTP Location

AN ENTERPRISE OF THE NAVAJO NATION

Figure 2 – Halchita WTP Plan and Schematic

Figure 3 - Proposer Provided System / NTUA Provided System

SECTION IV. COST ESTIMATE

THE UNDERSIGNED PROPOSER, HEREBY PROPOSES and agrees, if this cost estimate is accepted, to enter into Agreement to perform satisfactory work, based on the qualifications needed to complete the specific scope of work as requested by NTUA.

ITEM NO.	DESCRIPTION	ESTIMATE AMOUNT
1	Provide RO Treatment System	\$
2	Install RO Treatment System	\$
3	RO Treatment System Pilot Study	\$
4	RO Treatment System Operator Training	\$
5	RO Treatment System 1 year Operations Support (Performance Guarantee)	\$
6	Navajo Nation 5% Sales Tax	\$
	Total Amount (Items 1 – 6)	\$

Company Name:	
Name/Title:	
Signature:	

Date:

NAVAJO TRIBAL UTILITY AUTHORITY LABORATORY

WASTEWATER ANALYSIS

LAB #: 15-S423 FACILITY NAME: FACILITY OWNER:

CLIENT: NTUA Kayenta

DATE RECEIVED: 12/ 9/15 TIME RECEIVED: 8:15 COLLECTED BY: SCURLEY DATE COLLECTED: 12/ 8/15 TIME COLLECTED: 10:05

POINT OF COLLECTION: SAMPLE TYPE:

MAILING ADDRESS OF REPORT: Kayenta P.O Box 37 Kayenta, AZ 86033

DATE ANALYST ANALYZED METHOD RESULTS UNITS PARAMETER _____ _____ _ _ _ _ _ _ _ _ _ _____ ----12/10/15 12/10/15 12/17/15 12/10/15 Laboratory pH SM 4500-H B 7.14 Laboratory Temperature SM 2550 B 21.0 SM 4500-H B DB B 7.14 DB 21.0 C DB 12.8 mg/L BS 3,470 mg/L DB Total Suspendable Solids SM 2540 D SM 2540C Dissolved Solids

LOCATION DESCRIPTION: Mexican Hat Well REMARKS: COMMENTS: Wet Chemistry

DATE REPORTED: 12/15/15

DATE REVIEWED: 1/0/10

ANALYST: \underline{M} \underline{m} \underline{m}

and a state of the	the second s	the second s
Cohina cant to:	ZAYenta	7
District Water De	pt. I	
Environmental O	ko –	
USEPA Of		
Original at Lab		G
Date Sent / Inklei	01-1116	¥Ψ.

NAVAJO TRIBAL UTILITY AUTHORITY LABORATORY

WET CHEMISTRY ANALYSIS

PWSID #: NN 3032 EPA PWSID #: 4903032 LAB #: 15-S423 SYSTEM: Mexican Hat DATE RECEIVED: 12/ 9/15 TIME RECEIVED: 8:15 COLLECTED BY: SCURLEY DATE COLLECTED: 12/ 8/15 TIME COLLECTED: 10:05

CLIENT: NTUA Kayenta

MAILING ADDRESS OF REPORT: Kayenta P.O Box 37 Kayenta, AZ 86033

						DATE
PARAMETER	METHOD	RESULTS	UNITS	MCL	ANALYST	ANALYZED
Laboratory pH	SM 4500-H B	7.14		6.5-8.5	DB	12/10/15
Turbidity	SM 2130B	20.8	ntu	1.0	DB	12/ 9/15
Total Suspendable Solids	SM 2540 D	12.8	mg/L		BS	12/17/15
T. Alkalinity (CaCO3)	SM 2320B	412	mg/L		DB	12/14/15
Total Hardness	SM 2340-C	1,510	mg/L	500	DB	12/10/15
Calcium	SM 3500-Ca D	536.0	mg/L	75-200	DB	12/10/15
Calcium (CaCO3)	SM 3500-Ca D	1,340	mg/L	75-200	DB	12/10/15
Magnesium	SM 3500-Mg B	41.34	mg/L		DB	12/10/15
Magnesium (CaCO3)	SM 3500-Mg E	170	mg/L		DB	12/10/15
Dissolved Solids	SM 2540C	3,470	mg/L	500	DB	12/10/15
Chloride ICS2000	EPA 300.0	171	mg/L	250	RT	12/ 9/15
Fluoride ICS2000	EPA 300.0	0.60	mg/L	4.0	RT	12/ 9/15
Phosphate ICS2000	EPA 300.0	< 0,3	mg/L		RT	12/ 9/15
Sulfate ICS2000	EPA 300.0	1,880	mg/L	250	RT	12/10/15

LOCATION DESCRIPTION: Mexican Hat Well

.

14

Preserved	lemperature	No. of Containers	SAMPLE CONDITION L	LABORATORY U		Comments :									Mexican Had Well	Client Sample		Wastewater: BOD, TSS, TDS, pH, Tempe	Heavy Metals : Sb, As, Ba, Be, Cd, Cr, Cu Wet Chemstry : Alkalinity, Ca, Cl, Corrosiv	Lat	System Name	Client Name NTUA	CLIENT INFORMATION	Please Print Clearly	FORT DEFIAN (928) 729-572 Fax (928) 729-	P.O.BOX 170
YES NO			PON RECEIPT	SEONLY												ä		rature, Total Residual Chlorine	, Fe, Pb, Mn, Hg, Ni, Se, Tl, Zn ity, F, Total Hardness, Mg, NO	oratory Analysis Options					ICE, AZ 86504 1 6249	ATORY
			12/9/15	Date:				 							564231	NTUA Lab #		and Settable Solids	2, NO3, pH, Phosphate,	s (Heavy Metals, We	PWSID#NPDES#	Address POPSox				
			8:15A	Time:			SAMPLES MUST B		- - - -				 	. 1 a Lat	51/8/21	Date			K, Na, SO4, Total Diss	t Chemistry and W	0	170	- - 			
		0	Sherwin Jon Ling	SAMPLES RELE	-		E RECEIVED BEFORE HOLDING				் பிரில்				10:05.4	HNC Ice)3 e	Preservativ	alved Solids,	(astewater)	Roquel white has	Fort Defined AZ				
				ASED, BY:			rimes expire					1				Othe No. o Com	er of Sample pliance	Bottles	5		Site#fLocation	A0598			L.	NTUA CHAIN
			Regné												5	Heav Wet (Lead Nitrat	te (NO ₃)	· · · · · · · · · · · · · · · · · · ·		WATER ANALYSIS	- Roy	428 7295731			³ age of (
			Ser	RECEIVED BY:				· · · · · ·								Bioch Total Total	hemical O	xygen led Sol d Solid	Demano ilds is (TDS)	WASTEWATER ANAL	Uistaca	Tex X				5
																Potal Othe	ble TDS						•			

Revised 12/4/2015

••

NAVAJO TRIBAL UTILITY AUTHORITY LABORATORY

ION CHROMATOGRAPHY ANALYSIS

PWSID #: NN 3032 EPA PWSID #: 4903032 LAB #: 15-S425 SYSTEM: Mexican Hat

CLIENT: NTUA Kayenta

DATE RECEIVED: 12/ 9/15 TIME RECEIVED: 8:15 COLLECTED BY: SCURLEY DATE COLLECTED: 12/ 8/15 TIME COLLECTED: 10:05

דרת מר

SAMPLE TYPE:

MAILING ADDRESS OF REPORT: Kayenta P.O Box 37 Kayenta, AZ 86033

PARAMETER	METHOD	RESULTS	UNITS	MCL	ANALVST	DAIE ANALVZED
				****		ערנידנא איני
Nitrate Nitrite	SM 4110 B SM 4110 B	< 0.3 < 0.3	mg/L mg/L	10.0	RT RT	12/09/15 12/09/15

LOCATION DESCRIPTION: Mexican Hat Well

REMARKS: COMMENTS: NO2/NO3

DATE REPORTED: 12/15/15 DATE REVIEWED: 12/15/15

ANALYST:	·	Ð	
REVIEWED	BY:	st	

19	Copies sent to:	GINCIA T
1	District Water De	FOMPWICH
	Environmental O	c j
11	JSEPA One	KILK OX
(Wiginal at Lab	INNER
	ate Sent/Initial	WUBIS A

Preserved	Temperature	No. of Containers	SAMPLE CONDITION	, LABORATORY	Companie ·							Wercan Hat Well	Client Sa	,,	Wastewater: BOD, TSS, TDS, pH, Te	Wet Chemstry : Alkalinity, Ca, Cl, Cor Turbidity, and Temperature	Heavy Metals : Sb, As, Ba, Be, Cd, C		System Name	Client Name	CLIENT INFORMATION	Please Print Clearly	(928) 725 Fax (928)	P.O.BOX
YES NO			UPON RECEIPT	USEONLY	and the second								mple ID		mperature, Total Residual Chlorine	rosivity, F, Total Hardness, Mg, NO:	r, Cu, Fe, Pb, Mn, Hg, Ni, Se, Ti, Zn						-5721 729-6249	BORATORY 170 FIANCE AZ SAENA
			12/9/15	Date:		s						いいい	NTUA Lab #		and Settable Solids	2, NO3, pH, Phosphate	(Heavy Metals, W		PWSID#/NPDES#	Address POBO-				
			8:15/	Time:		AMPLES MIIST R					Ciletan	12/0/15	Date			, K, Na, SO4, Total Di	fet Chemistry and			× 17				
			allowing workers	SAMPLES RELEAS			 	 			A Co:01		INO ₃		Preservativ	issolved Solids,	Wastewater	Raquel whitehors	Contag	Cay State		J		I
			*	ËD BY:	MESEXPIRE							O No Co	o, of S	ample B	ottles				40209	diz				NTUA CH/
		aportes 1	2								~	Hea We Lea Nitri	avy IV at Che ad/Co ate (N	letals mistry pper IO ₃) O ₂)			WATER ANALYSIS	RDC#	9287295721	Phone			Page of	AIN OF CUSTODY RECORD
		h and a)									Bioc Tota	themi I Sus	cal Oxyg pended olved Si	jen De Solids Diids (1	rmand TDS)	WASTEWATER ANAL	District	<u> </u>					
		 			•			 		 	 	Pota Othe	ble Ti	DS			.YSIS							

Revised 12/4/2015

 $(\cdot,\cdot)_{i\in I}$

NAVAJO TRIBAL UTILITY AUTHORITY LABORATORY

HEAVY METALS ANALYSIS

SYSTEM: Mexican Hat PWSID #: NN 3032 EPA PWSID #: 4903032 LAB #: 15-S424

DATE RECEIVED: 12/ 9/15 TIME RECEIVED: 8:15 COLLECTED BY: SCURLEY DATE COLLECTED: 12/ 8/15 TIME COLLECTED: 10:05

DATE

Conjos sant to: 1/4 A/ Matri

CLIENT: NTUA Kayenta SAMPLE TYPE:

MAILING ADDRESS OF REPORT: Kayenta

P.O Box 37 Kayenta, AZ 86033

METHOD	RESULTS	UNITS	MCL	ANALYST	ANALYZED
EPA 200.5	< 0.003	mg/L	0.0100	RT	12/23/15
EPA 200.7	0.009	mg/L	2.00	RT	12/23/15
EPA 200.5	< 0.001	mg/L	0.005	RT	12/23/15
EPA 200.7	< 0.006	mg/L	0.100	RT	12/23/15
EPA 200.7	< 0.006	mg/L	1.30	RT	12/23/15
EPA 200.7	0.018	mg/L	0.300	RT	12/23/15
EPA 200.5	< 0.001	mg/L	0.015	RT	12/23/15
EPA 200.7	0.250	mg/L	0.050	RT	12/23/15
EPA 245.1	Comment	mg/L	0.0020		
EPA 200.5	< 0.003	mg/L	0.050	RT	12/23/15
EPA 200.7	412	mg/L		RT	12/23/15
EPA 200.7	7.46	mg/L		RT	12/23/15
EPA 200.7	0.012	mg/L		RT	12/23/15
EPA 200.7	0.020	mg/L	5.00	RT	12/23/15
SM 3113B	< 0.003	mg/L	0.006	EB	1/20/16
EPA 200.5	< 0.001	mg/L	0.004	RT	12/23/15
EPA 200.9	< 0.0007	mg/L	0.0020	EB	1/20/16
	METHOD EPA 200.5 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 200.7 EPA 245.1 EPA 200.5 EPA 200.7 EPA 200.7 EPA 200.7 SM 3113B EPA 200.5 EPA 200.9	METHODRESULTSEPA 200.5< 0.003	METHODRESULTSUNITSEPA 200.5< 0.003	METHODRESULTSUNITSMCLEPA 200.5< 0.003	$\begin{array}{llllllllllllllllllllllllllllllllllll$

LOCATION DESCRIPTION: Mexican Hat Well

REMARKS: COMMENTS: Heavy Comme:	Metals nt: Hg not	analyzed.
DATE REPORTED:	1/21/16	ANALYST: O, W
DATE REVIEWED:	1/27/14	REVIEWED BY: RW

No. of Containers Temperature

Preserved

NTUA LABORATORY P.O.BOX 170 FORT DEFIANCE, AZ 86504 (928) 729-5721 Fax (928) 729-6249

YES NO

Please Print Clearly														_					
CLIENT INFORMATION																			
Chent Name NTUA	Address POBOX	170	Fort Def	lance	State A	z	Zip B(656	4	Phone 97	87	795	72	1	Fax				
System Name	PWSID#/NPDES#		Raquel V	uni+	cho	rse	Site#/Loc	ation					NDC.		Chauter				
Laboratory Analys	is Options (Heavy Metals, We	et Chemistry and	Wastewater)		1	32					WATE	R ANA	LYSIS		WAST	TEWAT	ER ANA	LYSIS	
Heavy Metals : Sb, As, Ba, Be, Cd, Cr, Cu, Fe, Pb, Mn, Hg, N Wet Chemstry : Alkalinity, Ca, Cl, Corrosivity, F, Total Hardne Turbidity, and Temperature Wastewater. BOD, TSS, TDS, pH, Temperature, Total Residu	ii, Se, Tl, Zn ess, Mg, NO2, NO3, pH, Phosphate, ual Chlorine and Settable Solids	K, Na, SO4, Total D	issolved Solids,		Prese	rvative		Bottles							vygen Demand	ed Solids	I Solids (TDS)		
				03	e	ne	1er	of Sample I	npliance	ivy Metals	t Chemistry	d/Copper	ate (NO ₃)	ite (NO ₂)	chemical Ox	al Suspende	al Dissolved	able TDS	
Client Sample ID	NTUA Lab #	Date	Time	NH NH	2	Ŷ	ð	Ň	Con	Hea	Wei	Lea	Nitr	Nitr	Bio	Tot	Tot	Pot	
Mexican Hat Well	155424	12/8/15	10:05A							/						-			\vdash
														-					\vdash
					752	20													-
				DI I	51	E	Ø			1									-
				TF	Bi														
			60														-		
					1							-	-						-
					-					-				-	-				-
					-														
		SAMPLES MUST	BE RECEIVED B	EFORE	HOLD	DING T	IMES E	EXPIRE		C.S.									
Comments :																			_
	Date:	Time:	Con- Dellan Ser	SAM	PLES	RELEA	SED B	Y:	10.73	1988	1.90	20	14.14	0.55	RECEIV	ED BY:	1363		
SAMPLE CONDITION UPON RECEIPT	12/9/15	8:15A	Sherwin	leu	rle	4					f	200	me	d	SX	-			
the second s			1		/	1					1	- ()		0				

Other

FIBEROUANT ANALYTICAL SERVICES Date Time Determination of Asbestos in Water using TEM JobNumber: 201513128 NAVAJO TRIBAL UTILITY AUTH Client: PO BOX 170 RECEIVEN FT DEFIANCE, AZ 86504-0170 Office Phone: (928) 729-5721 FAX: (928) 729-6249 DEC 1 5 2015 # Samples: 1 TEM Rec: 12/9/2015 , Method: EPA 100.1 TEM Water Client Job: 15S428 - Mexican Hat Well - BOR PO Number: 4500055072 Report Date: 12/15/2015 Date Analyzed: 12/15/2015 Routing Number: -L DEPAR Method and Analysis Information: Fiberquant Internal SOP: TEMw Samples are analyzed using the protocols given in EPA method 100.1, as amended by the 1993 EPA guidence. Samples should be un-preserved water In 1 L containers having about 200 ml headspace for shaking. There is a 48 hr deadline between the time the sample is taken and the time it is filtered to minimize loss of asbestos fibers due to biological interference. Each sample is shock for 1 minute, and ultrasonicated for at least 10 minutes, shaking every 5 minutes to disperse any fibers that are present. A measured amount of sample is then filtered through a 0.1 um pore size polycarbonate filter, backed by a 5 um pore size MCE filter and a glass frit. Several volumes of liquid may be filtered for each sample in order to assure that a properly loaded sample is obtained. A portion of each resulting filter (and blanks) is then coated with 100-200 um of carbon in a Denton 502A Carbon Evaporator. The carbon encapsulates all of the larger and most of the smaller particulate on the filter. Three mm square pieces of the 502A Carbon Evaporator. The carbon encapsulates all or the larger and most of the smaller particulate on the inter. Three mm square pieces of the coated filter are placed on three or more copper TEM grids, and the original filter material is dissolved away in a Jaffe wick and/or condensation washer. The finished replica in carbon containing the particulate is then examined on a JEOL 1200 or Phillips CM 10 transmission electrom microscope at 10,000 to 20,000x magnification. All asbestos fibers >10um in length are tabulated and characterized as asbestos or non-asbestos using a

Or the product of the province and provide the provided opening cut-off is used for those samples containing so much non-asbestos particulate that the desired analytical sensitivity is impractical to attain.
The method was designed to determine EPA drinking water compliance. The standard for drinking water is <7 MFL as measured by this method.</p>
Fiberquant maintains Arizona Environmental Laboratory license #AZ0633 covering EPA Method 100.1.
Overall, the coefficient of variation can be expected to be approximately 0.5 for analyses in which >20 asbestos fibers have been counted, ranging up to 1.00 for analyses in which only a few asbestos fibers are counted.
The analysis was performed under an ongoing quality assurance program which includes: Lab blanks, prepared with each set of samples and analyzed. Each analyst has suitable background credentials, such as at least a bachelor's degree in geology or chemistry, and has undergone extensive 2-6 month training in TEM techniques and mineralogy specific to TEM asbestos analysis before being allowed to perform client analyses. Unknown reference samples are routinely identified to ensure that each analyst can collect and correctly interpret TEM information. The TEM is aligned and its performance checked daily. Magnification, electron diffraction pattern size, and analytical performance checked reading is aligned and its performance checked daily. Magnification, electron diffraction pattern size, and analytical performance checked reading is aligned and its performance checked reading.

combination of morphology, electron diffraction characteristics, and elemental composition. The result is calculated in millions of fibers per liter (MFL). The grid is scanned until 20 grid openings have been observed, or until an analytical sensitivity (the hypothetical observation of one fiber) of

aligned and its performance checked daily. Magnification, electron diffraction pattern size, and analytical performance characteristics are calibrated routinely. Samples are re-analyzed sometimes by the same analyst and sometimes by a different analyst in order to determine accuracy and precision. The total of QC analyses (blanks + recounts) are greater than 10% of analyzed samples. Each analyst participates in interiab round robins and proficiency testing in order to show correlation to other lab's analyses. Because TEM samples are not analyzed in batches, which would be traditional for most water analyses, and not every sample has a duplicate or replicate analysis associated with it, it is not possible to include a traditional QC report with the analysis. QC reports are produced monthly, and are available on request. All quality checks performed for these samples were in control except as detailed in the "Analytical Notes" below. Fiberquant is accredited by NVLAP to perform TEM analysis of asbestos in air samples, and has been found to be proficient in the EPA water proficiency program. Accreditation or proficiency does not imply endorsement by the EPA, any other United States governmental agency or any private agency or association. Each lab analysis refers only to the sample tested, and approval of Fiberquant Analytical Services.

Some results may have been calculated using client supplied data, such as volume or area sampled, for which Fiberquant assumes no liability for accuracy.

Job Analysis Not Sampled: Received; Filtered: Analyzed;	12/8/2015 12/9/2015 12/9/2015 12/9/2015 12/15/2015	10:05 By 10:05 12:55 14:30	y: Curləy, Sherwin	Copies sent to: Rayema District Water Dept. Environmental Ofc USEPA Ofc NNEPA Original at Lab Date Sent / Initial 11/17315
5025 S. 33 Page 1 of 3	rd Street Phoenix, A	rizona 85040-2816	Phone: 602-276-6139 Fiberquant, Inc.	1-800-743-2687 FAX: 602-276-4558
				· · · · · · · · · · · · · · · · · · ·

DIVISION

Job Number:

201513128

QA Report: Job Number: 201513128

1. Calibrations	· · · · · · · · · · · · · · · · · · ·	
TEM magnification. date of last.	12/2/2015	
TEM camera constant, date of last.	12/2/2010	
EDS performance check (k-factors, resolution, low-e perf.), date of last	6/26/3046	
TEM stage drift, minimum beam size, date of last,	6/26/2015	
plasma asher, date of last.	0/20/2015	
	10/22/2015	
2. Blanks (1/25 samples required)	Not Required This Job	**
3. Recounts (1/17 samples required)	Not Required This Job	
4. Analyst Performance		
NVLAP proficiency testing	Curront	
verified counts. cum. % true positives		
verification of diffraction pattern identifications. cum. % correct	90,2	
verification of EDS spectra. cum. % correct	97.5	

Phone: 602-276-6139 1-800-743-2687

	Analy ONL	sis Method Requested	Turn-	around-t Ircle one)	Ime
ANALY TICAL SERVICES			Rush	Nom	Ext
Fiberquant Analytical Services 5025 S. 334 St.; Phoenix, AZ 85040; Phone: 602-276-6139; FAX: 602-276-4558; info@fiberquant.com Analysis Request/Chain-of-Custody Form	Asbestos by PLM	Improved Interim Analyzo All If so liten by Layer or Single Layer Protocol: Yes No	Urg <0 Rush Mi <3 D hrs D	1-3 days	15-3 day: D
Submitted by (Company) Navajo Tribal Utility Authority	Fibers by PCM	7400(Area) 🗋 ORM (Personai) 🗖	<4 hr	24lv	
Address PO Box 170	Asbestos by TEM	AIR. AHERA	<6hr	24 hr	3-50 []
City, State, Zip Code Fort Defiance, AZ 86504		Water': Weter 🖾 Studge 🗆	1.20	5:30	N/A
Phone (928) 729 5721 FAX (928) 729-6249		Annex2 : Chatfield 🔲 🛛 Fuil 🗍	5	\searrow	1
Email raquelw@ntua.com		Vacuum Dusi (ASTM)	3-50	5-104	N/A
Involce to (Company) Navajo Tribal Utility Authority Address PO Box 170	Pb by FLAA	Analyto: Pb Othor Matrix: Filler: MCE Paint: by Area by Weight	<6 h/s	2-3 days	N/A
City. State. Zip Code Fort Deflance, AZ 86504 Phone (928) 729-5721 FAX (928) 729-6349		Soit			
Contact (print) Raquel Whitehorse	Fungi	Air Samplo: Zof Aller Oth ID/Count: Bulk Swab	<6 hrs	1-2 days	N/A
lob Humber or Project Hame 15 5 4-28		Other		-	
20 Number	Dust	NIOSH 500	<4hr	24h	NIA
	Other		Call	Call	

Ext. 15-30 days

3-5d N/A

NIA N/A

Sample Number	Description / Location finclude agar type	(maker(ezo, Dato)	Sample Date	Sample Time	Vol/Area
1)	Mexican Hat Well-E	OR	19/8/15	1005 am	IL
2)					
3)					
4)					
5)		· · · · ·			
6)		·			
7)					· · · · · · · · · · · · · · · · · · ·
8) * 12-10-1	5				
9) per	Keynalda			· · · ·	
10)	H L har				
11)					
12)					
13)					
14)					
15)				· ·····	
16)					
17)					
18)		• .			
19)					
20)				**	
1) Relinquished by: June Con	Date: 1/ 215 Time: 1.15P	3)Relinquished by:		Date: T	Ime:
2)Received by:	0 00 8.15 Time: (1) ()	4)Received by:		Date: T	ime:
• TEM Water: Sampler's name Required by State of Arizona	Print Name PX)		Page /	, 1
Review of Analysis Re	quest (Initials)			20151	3128

Note: Data completed by client (including number and identity of samples) is assumed to be correct until it is verified at time of sample preparation.

C:\MSOIfice\Winword\FORMS\COC28Forms.doc created: 7/1/88; Version 28; current: 03-01-11 Rev: LSP

 $\cdot \smile$

NAVAJO TRIBAL UTILITY AUTHORITY LABORATORY

WET CHEMISTRY ANALYSIS

PWSID #: NN 3032 EPA PWSID #: 4903032 LAB #: 15-5446 SYSTEM: Mexican Hat

DATE RECEIVED: 12/17/15 TIME RECEIVED: 8:38 COLLECTED BY: SCURLEY DATE COLLECTED: 12/16/15 TIME COLLECTED: 10:20

CLIENT: NTUA Kayenta

DATE

MAILING ADDRESS OF REPORT: Kayenta P.O Box 37 Kayenta, AZ 86033

PARAMETER	METHOD	RESULTS	UNITS	MCL	ANALYST	ANALYZED
						12/17/15
Laboratory pH Conductivity Turbidity Corrosivity Total Suspendable Solids T. Alkalinity (CaCO3) Total Hardness Calcium Calcium (CaCO3)	SM 4500-H B SM 2510B SM 2130B Langlier Index SM 2540 D SM 2320B SM 2340-C SM 3500-Ca D SM 3500-Ca D SM 3500-Ca D	7.13 3,990 54.4 0.55 5.4 398 1,380 380.0 950 104.6	umhos/cm ntu mg/L mg/L mg/L mg/L mg/L mg/L	6.5-8.5 1.0 500 75-200 75-200	DB DB KC DB BS DB DB DB DB DB DB DB	12/17/15 12/23/15 12/17/15 12/18/15 12/17/15 12/18/15 12/18/15 12/18/15 12/18/15 12/18/15
Magnesium Magnesium (CaCO3) Dissolved Solids Chloride ICS2000 Fluoride ICS2000 Phosphate ICS2000 Sulfate ICS2000	SM 3500-Mg E SM 3500-Mg E SM 2540C EPA 300.0 EPA 300.0 EPA 300.0 EPA 300.0	430 3,412 163 0.62 < 0.3 1,800	mg/L mg/L mg/L mg/L mg/L mg/L	500 250 4.0 250	DB DB RT RT RT RT	12/18/15 12/18/15 12/17/15 12/17/15 12/17/15 12/17/15

LOCATION DESCRIPTION: Mexican Hat Well - BOR

REMARKS: COMMENTS: Wet Chemistry No field pH and temperature. Copies cent to: District Water Dept. Environmental Old USEPA OK Original at Leb Dida Sent / Initial

ANALYST

DATE REPORTED: 12/23/15 DATE REVIEWED: 12/23/15

REVIEWED BY:

WASTEWATER ANALYSIS

LAB #: 15-S446 FACILITY NAME: FACILITY OWNER:

CLIENT: NTUA Kayenta

DATE RECEIVED: 12/17/15 TIME RECEIVED: 8:38 COLLECTED BY: SCURLEY DATE COLLECTED: 12/16/15 TIME COLLECTED: 10:20

POINT OF COLLECTION: SAMPLE TYPE:

MAILING ADDRESS OF REPORT: Kayenta P.O Box 37 Kayenta, AZ 86033

PARAMETER Laboratory pH Laboratory Temperature Total Suspendable Solids	METHOD SM 4500-H B SM 2550 B SM 2540 D	RESULTS 7.13 15.4 5.4 2.412	UNITS C mg/L mg/I.	ANALYST DB DB BS DB	ANALYZED 12/17/15 12/17/15 12/17/15 12/17/15 12/18/15
Dissolved Solids	SM 2540C	3,412	mg/L	DB	12/18/15

LOCATION DESCRIPTION: Mexican Hat Well - BOR REMARKS: COMMENTS: Wet Chemistry No field pH and temperature.

DATE REPORTED: 12/23/15DATE REVIEWED: 1/8/14

ANALYST:	TB.	60-	
REVIEWED	BY:		

Cooling pont to: ZAMAN	FA
District Water Dept.	
Environmental Ofc	
USEPA ON	
Original at Lab	
Date Sent / Initial 01-1/1/	V XN

DATE

NTUA CHAIN OF CUSTODY RECORD	

Page _1_ of _1_

NTUA LABORATORY P.O.BOX 170 FORT DEFIANCE, AZ 86504 (928) 729-5721 Fax (928) 729-6249

SAMPLE CONDITION UPON RECEIPT	STATES TO BORATORY USE ONLY	Comments :										Mexican Hat Well - BOR	Client Sample ID		Turbidity, and Temperature 'sstewater, BOD, TSS, TDS, pH, Temperature, Total Residual Chlo	Heavy Metals : Sb, As, Ba, Be, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Se, T Wet Chemstry : Alkalinity, Ca, Cl, Corrosivity, F, Total Hardness, Mg	s and the second sec	System Name:	COMENTATION COMENTATION Structure Client Name: NTUA Laboratory
21/11/15												944 S51	NTUA Lab #		rine and Settable Solids	, Zn NO2, NO3, pH, Phosphate,	ons (Heavy) Metals Wet	PWSID#NPDES#	Address: PO Box 170
8:38A	Time		SAMPLES, MUSI									51/10/121	Date			K, Na, SO4, Total D	Chemistry and		
Juni						 METTOM						10:20 A	Time		-r1	issolved Solids,	Vastewater)	Contact: Raquel Whitehorse	ner the state of t
m (Junly	SAMPLES RELE		FOREHOLDING										HNC Ice Non	93 	Preservative				State: AZ
	ASEDBY		TIMESEXPIRE										Othe No. c	ər of Sample	Bottle	15		Site#Location	100 HHHH
						 	 					×	Com	pliance 					Phone
		į				 						×	Wat	Chemistry			WATI		928-7
c						 	+						Lead	:/Copper			RANA		29-5721
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									 -	Nitra	ate (NO ₃)			SISA	₩ C¥	
) 								 				Nitri	te (NO ₂)					Fax
	ECEIVE	-		5	_	 		<u> </u>	 		 		Biod	chemical ()xygei	n Deman	VASTEV		
	D.BY-Y					 							Tot	al Suspen	ded S	olids	VATER		
						 							Tot	ai Dissolve	əa Sol	uds (TDS	ANALYS		
											 		RA	2018 TUS D's			31 31		

Revised 12/17/2015

Preserved

No. of Containers Temperature

Japc YES MO

Eaton Analytical

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Report:

Priority:

Status:

PWS ID:

Lab ID#:

Client:	Navajo	Tribal	Utility	Authority

Raquel Whitehorse Attn: P. O. Box 170 Fort Defiance, AZ 86504

Edith Barber

155410

Copies

to:

354917 Standard Written Final Not Supplied AZ0432

	Sample Information									
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time					
3375655	Mexican Hat Well-BOR	335.4	12/16/15 10:20	Client	12/17/15 09:30					
3375656	Mexican Hat Well-BOR	525.2	12/16/15 10:20	Client	12/17/15 09:30					
3375657	Mexican Hat Well-BOR	531.2	12/16/15 10:20	Client	12/17/15 09:30					
3375658	Mexican Hat Well-BOR	515.3	12/16/15 10:20	Client	12/17/15 09:30					
3375660	Mexican Hat Well-BOR	1613	12/16/15 10:20	Client	12/17/15 09:30					
3375661	Mexican Hat Well-BOR	549.2	12/16/15 10:20	Client	12/17/15 09:30					
3375662	Mexican Hat Well-BOR	548.1	12/16/15 10:20	Client	12/17/15 09:30					
3375663	Mexican Hat Well-BOR	547	12/16/15 10:20	Client	12/17/15 09:30					
3375664	Mexican Hat Well-BOR	504.1	12/16/15 10:20	Client	12/17/15 09:30					
3375665	Mexican Hat Well-BOR	524.2	12/16/15 10:20	Client	12/17/15 09:30					
Contraction of the		Report Summary		-	Contraction of the					

NTUA Lab#: 15S429

Note: Dioxin analysis was performed by Pace Analytical Services, Minneapolis, MN.

Note: In the Method 524.2 analysis, the bromomethane recovery in the CCC (59%) was outside the acceptance limits of 70-130%.

Detailed quantitative results are presented on the following pages. The results presented relate only to the samples provided for analysis.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Jessie Varab at (574) 233-4777.

Note: This report may not be reproc

duced, except in full, without written approval from EEA.	Copies sent to: Kayema District Water Dept. Environmental Ofc USEPA Ofc Original at Lab Date Sent / Initial
	01/15/2016
Title	Date

Authorized Signature

Quesie Vareb

Client Name: Report #:

Navajo Tribal Utility Authority 354917

Page 1 of 5

PWS ID: Not Supplied

Sampling Point: Mexican Hat Well-BOR

General Chemistry											
Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#	Data Qualifiers		
Cyanide, Total	335.4	0.2 *	0.2	< 0.2	mg/L	12/21/15 13:36	12/21/15 15:46	3375655	-		

Semi-volatile Organic Chemicals											
Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed	EEA ID#	Data Qualifiers		
1,2-Dibromo-3-chloropropane (DBCP)	504.1	0.0002 *	0.00002	< 0.00002	mg/L	12/24/15 11:29	12/24/15 21:11	3375664			
1,2-Dibromoethane (EDB)	504.1	0.00005 *	0.00001	< 0.00001	mg/L	12/24/15 11:29	12/24/15 21:11	3375664			
2,4-D	515.3	0.07 *	0.0001	< 0.0001	mg/L	12/29/15 08:45	12/31/15 01:48	3375658			
Dalapon	515.3	0.2 *	0.0010	< 0.0010	mg/L	12/29/15 08:45	12/31/15 01:48	3375658			
Dicamba	515.3	-	0.0001	< 0.0001	mg/L	12/29/15 08:45	12/31/15 01:48	3375658			
Dinoseb	515.3	0.007 *	0.0002	< 0.0002	mg/L	12/29/15 08:45	12/31/15 01:48	3375658			
Pentachlorophenol	515.3	0.001 *	0.00004	< 0.00004	mg/L	12/29/15 08:45	12/31/15 01:48	3375658			
Picloram	515.3	0.5 *	0.0001	< 0.0001	mg/L	12/29/15 08:45	12/31/15 01:48	3375658	-		
2,4,5-TP (Silvex)	515.3	0.05 *	0.0002	< 0.0002	mg/L	12/29/15 08:45	12/31/15 01:48	3375658			
Alachlor	525.2	0.002 *	0.0002	< 0.0002	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Aldrin	525.2		0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Atrazine	525.2	0.003 *	0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Benzo(a)pyrene	525.2	0.0002 *	0.00002	< 0.00002	mg/L	12/18/15 09:00	12/22/15 08:44	3375656	-		
gamma-BHC (Lindane)	525.2	0.0002 *	0.00002	< 0.00002	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Butachlor	525.2		0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Dieldrin	525.2		0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Di(2-ethylhexyl)adipate	525.2	0.4 *	0.0006	< 0.0006	mg/L	12/18/15 09:00	12/22/15 08:44	3375656	-		
Di(2-ethylhexyl)phthalate	525.2	0.006 *	0.0006	< 0.0006	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Endrin	525.2	0.002 *	0.00001	< 0.00001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Heptachlor	525.2	0.0004 *	0.00004	< 0.00004	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Heptachlor epoxide	525.2	0.0002 *	0.00002	< 0.00002	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Hexachlorobenzene	525.2	0.001 *	0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656	_		
Hexachlorocyclopentadiene	525.2	0.05 *	0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Methoxychlor	525.2	0.04 *	0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Metolachlor	525.2		0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Metribuzin	525.2		0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Propachlor	525.2		0.0001	< 0.0001	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Simazine	525.2	0.004 *	0.00007	< 0.00007	mg/L	12/18/15 09:00	12/22/15 08:44	3375656			
Aldicarb	531.2		0.0005	< 0.0005	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
Aldicarb sulfone	531.2		0.0008	< 0.0008	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
Aldicarb sulfoxide	531.2		0.0005	< 0.0005	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
Carbary	531.2		0.0005	< 0.0005	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
Carbofuran	531.2	0.04 *	0.0009	< 0.0009	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
3-Hydroxycarbofuran	531.2		0.0005	< 0.0005	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
Methomyl	531.2		0.0005	< 0.0005	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
1-Naphthol	531.2		0.0010	< 0.0010	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
Oxamyl	531.2	0.2 *	0.0020	< 0.0020	mg/L	12/23/15 09:08	12/28/15 21:33	3375657			
Glyphosate	547	0.7 *	0.0060	< 0.0060	mg/L	12/22/15 13:30	12/23/15 01:17	3375663			
Endothall	548.1	0.1 *	0.0090	< 0.0090	mg/L	12/21/15 07:55	12/21/15 23:26	3375662			
Diquat	549.2	0.02 *	0.0004	< 0.0004	mg/L	12/18/15 07:45	12/21/15 20:34	3375661			

Page 2 of 5

REGEIVED JAN 2 1 2016 AND L DEPAR

Client Name: Navajo Tribal Utility Authority

Report #: 354917

Volatile Organic Chemicals										
Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed Date	EEA ID#	Data Qualifiers	
Benzene	524.2	0.005 *	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
Bromobenzene	524.2		0.0005	< 0.0005	mg/L	_	12/22/15 16:29	3375665		
Bromochloromethane	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Bromodichloromethane	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
Bromoform	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	-	
Bromomethane	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
n-Butylbenzene	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
sec-Butylbenzene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
tert-Butylbenzene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Carbon tetrachloride	524.2	0.005 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Chlorobenzene	524.2	0.1 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	_	
Chloroethane	524.2	-	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
Chloroform	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Chloromethane	524.2	-	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
2-Chlorotoluene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
4-Chlorotoluene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Dibromochloromethane	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Total Tribalomethanes	524.2	0.08 *	0.0005	< 0.0005	ma/L		12/22/15 16:29	3375665		
1 2-Dibromo-3-chloropropage (DBCP) @	524.2		0.0002	< 0.0002	ma/L		12/22/15 16:29	3375665		
1.2-Dibromoethane (EDB) @	524.2	-	0.0002	< 0.0002	ma/L		12/22/15 16:29	3375665		
Dibromomethane	524.2		0.0005	< 0.0005	ma/L		12/22/15 16:29	3375665		
	524.2	0.6*	0.0005	< 0.0005	ma/l		12/22/15 16:29	3375665		
1.2 Dichlorobenzene	524.2	0.0	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
	524.2	0.075 *	0.0005	< 0.0005	mg/L		12/22/15 16:20	2275665		
1,4-Dichlorodenzene	524.2	0.075	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375005		
1,1-Dichloroethane	524.2	0.005 *	0.0005	< 0.0005	mg/L		12/22/15 10:29	3375005		
1,2-Dichioroethane	524.2	0.005	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375005		
1,1-Dichloroethylene	524.2	0.007*	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
cis-1,2-Dichloroethylene	524.2	0.07 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
trans-1,2-Dichloroethylene	524.2	0.1 -	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	-	
Dichloromethane	524.2	0.005 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
1,2-Dichloropropane	524.2	0.005 -	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
1,3-Dichloropropane	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
2,2-Dichloropropane	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
1,1-Dichloropropylene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	-	
cis-1,3-Dichloropropylene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	-	
trans-1,3-Dichloropropylene	524.2	-	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
1,3-Dichloropropylene, cis & trans	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	-	
Ethylbenzene	524.2	0.7 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	-	
Hexachlorobutadiene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	-	
Isopropylbenzene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
4-Isopropyltoluene	524.2	-	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Methyl-t-butyl ether (MTBE)	524.2	-	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Naphthalene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
n-Propylbenzene	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
Styrene	524.2	0.1 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
1,1,1,2-Tetrachloroethane	524.2	-	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665		
1,1,2,2-Tetrachloroethane	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Tetrachloroethylene	524.2	0.005 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		
Toluene	524.2	1*	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665		

Page 5 of 9

JAN 2 1 2016

CANDI DEV

Client Name: Navajo Tribal Utility Authority

Report #: 354917

1,2,3-Trichlorobenzene	524.2	-	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	
1,2,4-Trichlorobenzene	524.2	0.07 *	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	
1,1,1-Trichloroethane	524.2	0.2 *	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	
1,1,2-Trichloroethane	524.2	0.005 *	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	
Trichloroethylene	524.2	0.005 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	
Trichlorofluoromethane	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	-
1,2,3-Trichloropropane	524.2	-	0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	-
1,2,4-Trimethylbenzene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	
1,3,5-Trimethylbenzene	524.2		0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	
Vinyl chloride	524.2	0.002 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	
1,2-Xylene	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	
1,3 + 1,4-Xylene	524.2		0.0005	< 0.0005	mg/L	-	12/22/15 16:29	3375665	
Xylenes, Total	524.2	10 *	0.0005	< 0.0005	mg/L		12/22/15 16:29	3375665	

Reference Lab Tests											
Analyte	Method	Reg Limit	MRL†	Result	Units	Preparation Date	Analyzed	UL ID#	Data Qualifiers		
Dioxin	1613	3 e-8 *	5.0 e-9	< 5.0 e-9	mg/L	01/04/16 12:00	01/05/16 12:45	3375660	-		

@ EEA does not hold certification in the state of origin for this parameter.

† EEA has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

Reg Limit Type:	MCL	SMCL	AL
Symbol:	•	A	1

Lab Definitions

Continuing Calibration Check Standard (CCC) / Continuing Calibration Verification (CCV) / Initial Calibration Verification Standard (ICV) / Initial Performance Check (IPC) - is a standard containing one or more of the target analytes that is prepared from the same standards used to calibrate the instrument. This standard is used to verify the calibration curve at the beginning of each analytical sequence, and may also be analyzed throughout and at the end of the sequence. The concentration of continuing standards may be varied, when prescribed by the reference method, so that the range of the calibration curve is verified on a regular basis. CCL, CCM, and CCH are the CCC standards at low, mid, and high concentration levels, respectively.

Internal Standards (IS) - are pure compounds with properties similar to the analytes of interest, which are added to field samples or extracts, calibration standards, and quality control standards at a known concentration. They are used to measure the relative responses of the analytes of interest and surrogates in the sample, calibration standard or quality control standard.

Laboratory Duplicate (LD) - is a field sample aliquot taken from the same sample container in the laboratory and analyzed separately using identical procedures. Analysis of laboratory duplicates provides a measure of the precision of the laboratory procedures.

Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS) - is an aliquot of reagent water to which known concentrations of the analytes of interest are added. The LFB is analyzed exactly the same as the field samples. LFBs are used to determine whether the method is in control. FBL, FBM, and FBH are the LFB samples at low, mid, and high concentration levels, respectively.

Laboratory Method Blank (LMB) / Laboratory Reagent Blank (LRB) - is a sample of reagent water included in the sample batch analyzed in the same way as the associated field samples. The LMB is used to determine if method analytes or other background contamination have been introduced during the preparation or analytical procedure. The LMB is analyzed exactly the same as the field samples.

Laboratory Trip Blank (LTB) / Field Reagent Blank (FRB) - is a sample of laboratory reagent water placed in a sample container in the laboratory and treated as a field sample, including storage, preservation, and all analytical procedures. The FRB/LTB container follows the collection bottles to and from the collection site, but the FRB/LTB is not opened at any time during the trip. The FRB/LTB is primarily a travel blank used to verify that the samples were not contaminated during shipment.

Matrix Spike Duplicate Sample (MSD) / Laboratory Fortified Sample Matrix Duplicate (LFSMD) - is a sample al6iquot taken from the same field sample source as the Matrix Spike Sample to which known quantities of the analytes of interest are added in the laboratory. The MSD is analyzed exactly the same as the field samples. Analysis of the MSD provides a measure of the precision of the laboratory procedures in a specific matrix. SDL, SDM, and SDH / LFSMDL, LFSMDM, and LFSMDH are the MSD or LFSMD at low, mid, and high concentration levels, respectively.

Matrix Spike Sample (MS) / Laboratory Fortified Sample Matrix (LFSM) - is a sample aliquot taken from field sample source to which known quantities of the analytes of interest are added in the laboratory. The MS is analyzed exactly the same as the field samples. The purpose is to demonstrate recovery of the analytes from a sample matrix to determine if the specific matrix contributes bias to the analytical results. MSL, MSM, and MSH / LFSML, LFSMM, and LFSMH are the MS or LFSM at low, mid, and high concentration levels, respectively.

Quality Control Standard (QCS) / Second Source Calibration Verification (SSCV) - is a solution containing known concentrations of the analytes of interest prepared from a source different from the source of the calibration standards. The solution is obtained from a second manufacturer or lot if the lot can be demonstrated by the manufacturer as prepared independently from other lots. The QCS sample is analyzed using the same procedures as field samples. The QCS is used as a check on the calibration standards used in the method on a routine basis.

Reporting Limit Check (RLC) / Initial Calibration Check Standard (ICCS) - is a procedural standard that is analyzed each day to evaluate instrument performance at or below the minimum reporting limit (MRL).

Surrogate Standard (SS) / Surrogate Analyte (SUR) - is a pure compound with properties similar to the analytes of interest, which is highly unlikely to be found in any field sample, that is added to the field samples, calibration standards, blanks and quality control standards before sample preparation. The SS is used to evaluate the efficiency of the sample preparation process.

Eaton Analytical

110 South Hill Street South Bend, IN 46617 Tel: (574) 233-4777 Fax: (574) 233-8207 1 800 332 4345

Laboratory Report

Client:	Navajo Tribal Utility Authority	Report:	354917
		Priority:	Standard Written
Attn:	Raquel Whitehorse P. O. Box 170	Status:	Final
	Fort Defiance, AZ 86504	PWS ID:	Not Supplied

Copies

to: Edith Barber

Sample Information											
EEA ID #	Client ID	Method	Collected Date / Time	Collected By:	Received Date / Time						
3375659	Mexican Hat Well-BOR	505	12/16/15 10:20	Client	12/17/15 09:30						
		Report Summary									

Note: There were no reportable results for Method 505 due to matrix interference. The client was notified of the situation, and recollection of the sample was requested.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call Jessie Varab at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from EEA.

Analytical Services Manager

Copies sent to:
District Water Dept.
Environmental Ofc
USEPA Ofc
Original at Lab
Date Sent / Initial

Authorized Signature

Quesic Varab

01/15/2016

Date

Page 9 of 9		-	-		_									-	_	1.5	_			_		-
MATRIX CODES: DW-DRINKING WATER RW-REAGENT WATER GW-EXPOSURE WATER EW-EXPOSURE WATER SW-SUFACE WATER PW-POOL WATER PW-POOL WATER	RELINQUISHED BY:(Signature)	RELINQUISHED BY:(Signature)	14	13	in loloi	n Solo 10	9 3. (olou	E 0/01 / 10 B	7 N/10/02	6 4 6/01	5	020	1 500 2	11/11 5595266 1	LAB Number	edithb@ntua.com	BILL TO:	Navajo Tribal Utility Authority - edithb@ntua.com	REPORT TO:	www.eatonanalytical.com Shaded area for EE		eurot
TURN-AROUND TIN SW = Standard Written: (1 RV ⁻ = Rush Verbal: (5 wor RW ⁻ = Rush Written: (5 wo	DATE TIME	DATE TIME				AA				-				5/15 1030 X	COLLECTION	raquelw@ntua.com &		raquelw@ntua.com &	fuire and	EA use only		Ins
AE (TAT) - SURCHARGE 5 working days) 0% hing days) 50% rking days) 75% rking days) 75%	RECEIVED FOR LABOR	RECEIVED BY:(Signati												Mexican	SA	MONITORING		Aleren	SAMPLER (Signature)		aton An	
S IV" = IV" = SP' STA STA	ATORY BY	ure) [v							+	Hat Well-	MPLING SITE	×	Yes	- Curley	1	CHAIN	alytical	
Immediate Verbali (3 working days) 100% Immediate Written: (3 working days) 125% = Weekend, Holiday CALL = Veekend, Holiday CALL F* = Less than 48 hours CALL 0435 Issue 2.0 Effective Date: 01/20/2012	AM PM	DATE TIME LAB RESERVE LAB COMMENTS DATE TIME		504.1 LTB	S24.2 LTB S.A.	504.1 EDB/DBCP	547 Glyphosate	548.1 Endothall	549.2 Diquat	1613 Dioxin	505 PCB/Toxanhene/Chlor	515.3 Chlorinated Acids	531.2 Carbamates	50/ 335.4 Cyanide (Report as F	TEST NAM		No POPULATION SERVED	P	PWS ID #	OF CUSTODY RECOR		
H = 5 /6	CEPT (check one), /Blue Ambient	S THE RIGHT TO RETURN UNUS		-	15						dane			(rec) 337	Æ	SW	SOURCE WATER		STATE (sample origin)	S	T: 1.800.332 F: 1.574.233	110 S. Hill St South Bend,
amples received un rith less than 48 hour amaining may be sub dditional charges.	2 °C Upon Receip	ED PORTIONS OF NON-AD		or orce u	(alais	hald	6003	662	(ala)	loloh	154	1.00	900	5655	AMPLE REMARKS	155429	NTUA LAB #:		PROJECT NAME		4345 8207	reet IN 46617
announced rs holding time sject to	1 NA	NEOUS SAMPLES TO CLI	_		× 3	1 2	2	2		3	2		2	~ -	YES NO. #	ONTAIN	45-55644		PO#	Page 1 of	Batch # 3 C	Order #
		ENT		DW	DW	DW	DW	DW	DW	DW	DW	DW	DW	DW	MATRI	CODE			-	-	16/2	713
				SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	SW	TURNA	ROUND	тім	E			7	~

Radiation Safety Engineering, Inc.

3245 N. WASHINGTON ST. . CHANDLER, ARIZONA 85225-1121 Website: www.radsafe.com

(480) 897-9459 FAX (480) 892-5446

1.4

5

Radiochemical Activity in Water (pCi/L)

Navajo Tribal Utility Authority Box 170 Fort Defiance, AZ 86504

Sampling Date: December 08, 2015 Sample Received: December 09, 2015 Analysis Completed: December 28, 2015

Sample ID	Gross Alpha Activity Method 600/00-02 (pCi/L)	Uranium Activity Method ASTM D6239 (pCi/L)	Adjusted Gross Alpha (pCi/L)	Radium 226 Activity Method GammaRay HPGE (pCi/L)	Radium 228 Activity Method GammaRay HPGE (pCi/L)	Total Radium (pCi/L)
Mexican Hat Well BOR	13.6 ± 1.0	2.7 ± 0.6	10.9 ± 1.2	2.5 ± 0.3	< 0.9	2.5 ± 0.3

Date of Analysis	12/9/2015	12/11/2015	12/11/2015	12/11/2015	12/11/2015	12/11/2015
the second s						

Copies sent to: LU	ienta
District Water Dept.	
Environmental Ofc	11/00
USEPA Ofc	NNEPA
Original at Lab	
Date Sent / Initial	

MIZ

Robert L. Metzger, Ph.D., C.H.P.

Laboratory License Number AZ0462

Radiation Safety Engineering, Inc.

3245 N. WASHINGTON ST. · CHANDLER, ARIZONA 85225-1121 Website: www.radsafe.com

(480) 897-9459 FAX (480) 892-5446

Isotopic Uranium Analysis

Navajo Tribal Utility Authority Box 170 Fort Defiance, AZ 86504

Sampling Date: December 08, 2015 Sample Received: December 09, 2015 Uranium Analysis Date: December 11, 2015

Sample No.	²³⁸ U	²³⁵ U	²³⁴ U	Total	
	1.3 ± 0.3	0.059 ± 0.002	1.4 ± 0.3	2.7 ± 0.6	Activity (pCi/L)
Mexican Hat Well BOR	3.8 ± 0.8	0.027 ± 0.001	0.00022 ± 0.00005	3.8 ± 0.8	Content (ug/L)
	Comments:				

CELVED

Robert L. Metzger, Ph.D., C.H.P.

Laboratory License Number AZ0462

Arizona Department of Environmental Quality

Drinking Water Radionuclides-Adjusted Gross Alpha, Radium 226 & 228, Uranium Analysis Report ***Samples To Be Taken At Entry Point Into Distribution System (EPDS) Only***

PWS ID#: AZ04		-	PWS Name:				
December 8, 2015	10:05	(24 hour clock)					
Sample Date	Sample Time Owner/Contact Person						
Owner/Contact Fax 1	Number	-	Owner/Contact Phone Number				
Sample Collection Po	bint						
Compliance San	nple Type:						
Reduced N	Ionitoring		Date Q1 collected:				
Quarterly			Date Q2 collected:				
Composite	of four quarterly sa	mples	Date Q3 collected:				
			Date 04 collected:				

RADIOCHEMICAL ANALYSIS

>>>To be filled out by laboratory personnel <<<

Combined Uranium must be reported in micrograms per liter

Analysis Method	MCL	Reporting Limit	Contaminant Name	Cont. Code	Analyses Run Date	Result		Exceed MCL
	15 pCi/L		Adjusted Gross Alpha	4000	12/11/2015	10.9 ± 1.2		
600/00-02		3 pCi/L	Gross Alpha	4002	12/9/2015	13.6 ± 1.0		
7500 - Rn			Radon	4004				
ASTM D6239	30 µg/L	1 μg/L	Combined Uranium	4006	12/11/2015	3.8 ± 0.8	μg/L	
			Uranium 234	4007	12/11/2015	0.00022 ± 0.00005		
			Uranium 235	4008	12/11/2015	0.027 ± 0.001		
			Uranium 238	4009	12/11/2015	3.8 ± 0.8		
	5 pCi/L	1 pCi/L	Combined Radium (226,228)	4010	12/11/2015	2.5 ± 0.3		
GammaRay HPGE		1 pCi/L	Radium 226	4020	12/11/2015	2.5 ± 0.3		1.1.1.1.1.1
GammaRay HPGE		1 pCi/L	Radium 228	4030	12/11/2015	< 0.9		

LABORATORY INFORMATION

>>>To be filled out by laboratory personnel <<<

Specimen Number:	RSE53424		2 1 2016
Lab ID Number:	AZ0462		
Lab Name: Radia	ation Safety Engineering, Inc.		DE DEDADTMENT
Printed Name and P	hone Number of Laboratory Contact:	Robert L. Metzger, Ph.D., C.H.P. (480) 897-9459	CPARTIN .
Comments: Mexi	ican Hat Well BOR	+	
Authorized Signatur	re: M	2 miles	
Date Public Water S	System Notified:		

RECEIVE

DWAR 6: 11/2007

			_							Nor	01107	CODY	0500						
P.C.BOX 170 P.C.BOX 170 FORT DEF/ANCE, AZ 86504 (928) 729-5721 Fax (928) 729-572			_					NTUP		Pa	ge 1 c	ы 1	REUL	JKU					
Ploase Print Clearly CUENTINEORMATION STATES AND A STATES			S.P. S.V.				kan j		6 .3			-17-12	振					7.44N	
Chern Name, NTUA Laboratory	Address: PO Box 1	70	City. Fort Defiar	nce	State A	Z	Z.p; 865	15		Phone (928)72	9-572	 		Fac (92)	3)729-6	249		200400
System Name Statistics of Theory and the Article Provide Ball (1995), a statistic statistic statistics of the	INSID-MODESA	TANIAN TANA	Contect Raquel V	Whitehors	e 5.1-5 11 1	1.000	See Loc	n ion					ROCA		Destrict				
Heavy Metala : Sb, As, Ba, Be, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Se, Ti, Zh	(Heavy Metala, V	YetiChamietry and	Wastewater)								WATE		LYSIS		WAS ⁻	TEWAT	ER ANA ଜ	LYSIS	
Wet Chemstry : Alkalinky, Ca, Cl, Corrosivity, F, Total Hardness, Mg, NO2, Turbiday, and Temperature Waatewater: ROD, TSS, TDS, cH, Temperature, Total Residual Chlorine a	NO3, pH, Phosphale	e, K, Na, SO4, Tolal D	essolved Solids,		Prese	tvalive		ottes							gen Demu	Solids	talids (TD		
							7	f Sample Bo	pliance	y Metals	Chemistry	Capper	(rON) a	('ON)	hemical Only	Suspended	Dissolved S	ole TDS	
Cient Sample ID	NTUA Lab #	Date 13/C/10	Time	- NH	<u>3</u>	- NoN	ŧ	ND. 0	Com	Heav	Wet	Lcall	Nitra	Nitrite	Block	1 Jotal	1 Total	Potat	< RAD
Mexican Hat Well - BOR		76/15	1005			×							-		200		Ч		<u> </u>
	ļ														 				
				+	-	+													
	ļ	1			ļ				<u> </u>	ļ	ļ				ļ			<u> </u>	ļ
							-						<u> .</u>				'		
				- -															<u> </u>
THE PROPERTY OF STREET, AND A PROPERTY OF S	ALTER PERSON	DE-ETISZENIK	IN-INCOMPA	asure	P.1422	ANK C	LANICE STREET	 1354	50862	115:0	 	 संद्राव	Laliese	VALUE A		198919	1	16-12-	<u>.</u>
amonta RADs to include: R226 R228 G	-alpha and	Isotonic Ur	Please in	loude l	NTU.	A lat	0000 0 010	i dati iber	on f	inal c	所設 epoi	ts.		¥3)}	100417	(WAN)	机合金的	<u>AICH</u>	5830
PO#: 45-55101								17776			<u></u>	24.064.1		<i>cinnei</i> s		with the			
IN THE REPORT OF THE PARTY OF T					PLES		SEO B						御鮮	(TES)	REGE	VED BY			
No. of Containers	<u> '"/8/15</u> 	116pm	prime	- la	ury.						 								
Temperature			<u> </u>							·	K	M	\mathbb{N}	<u>JJ</u>	.#7	ITK	<u>III</u>	1	
Preserved YES NO	<u> </u>										<u> </u>								
- min																			

.

ION CHROMATOGRAPHY ANALYSIS

PWSID #: NN 3032 EPA PWSID #: 4903032 LAB #: 15-S447 SYSTEM: Mexican Hat

CLIENT: NTUA Kayenta

DATE RECEIVED: 12/17/15 TIME RECEIVED: 8:38 COLLECTED BY: SCURLEY DATE COLLECTED: 12/16/15 TIME COLLECTED: 10:20

ידידי ארו

 $\mathcal{A}(\mathbf{r})$

SAMPLE TYPE:

MAILING ADDRESS OF REPORT: Kayenta P.O Box 37 Kayenta, AZ 86033

PARAMETER	METHOD	RESULTS	UNITS	MCL	ANALYST	ANALYZED
Nitrate	SM 4110 B	< 0.3	mg/L	10.0	RT	12/17/15
Nitrite	SM 4110 B	< 0.3	mg/L	1.00	RT	12/17/15

LOCATION DESCRIPTION: Mexican Hat Well - BOR

REMARKS: COMMENTS: Nitrate/Nitrite

DATE REPORTED:

ANALYST:

DATE REVIEWED: 12/18/15 REVIEWED BY:

	and the second		
	Copies sent to:	Mente	\mathcal{N}
	District Water Dept.	1	
	Environmental Ofc	KIKIPPC	x /
	USEPA OR	NOVI	At
	nete Sent/Initial 14	111315	A
ł	Latit Courter and the second second	View strategy and the state of the strategy and the strat	

Biochemical Oxygen Demand X Total Suspended Solids Total Dissolved Solids (TDS)	Image: state	Image: State AZ State AZ	Audress: PD Ban 170 City: PWSDBMPDES# Contact: RaqueTW (Heavy Mietals: Wet: Chemistry and Wasterwardet) Contact: RaqueTW (Heavy Mietals: Wet: Chemistry and Wasterwardet) Contact: RaqueTW NTUA Lab # Date Time 1055 L1HT 12/14/15 10:30/ 1055 L1HT 10:30/ 10:30/	Fax (928) 729-6249 Chearly PROVIDION Res St, As, Ba, Be, Cq, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Se, Ti, Zn Ataenator emperature D, TSS, TDS, pH, Temperature, Total Hardness, Mg, NO2, N Client Sample ID Client Sample ID Mexican Hat Well - BOR V Nexican Hat Well - BOR
---	--	--	---	---

NTUA CHAIN OF CUSTODY RECORD

NAVAJO TRIBAL UTILITY AUTHORITY LABORATORY

HEAVY METALS ANALYSIS

SYSTEM: Mexican Hat PWSID #: NN 3032 EPA PWSID #: 4903032 LAB #: 15-S445

DATE RECEIVED: 12/17/15 TIME RECEIVED: 8:43 COLLECTED BY: SCURLEY DATE COLLECTED: 12/16/15 TIME COLLECTED: 10:20

DATE

CLIENT: NTUA Kayenta SAMPLE TYPE:

MAILING ADDRESS OF REPORT: Kayenta

P.O Box 37 Kayenta, AZ 86033

PARAMETER	METHOD	RESULTS	UNITS	MCL	ANALYST	ANALYZED
Arsenic	EPA 200.5	< 0.003	mg/L	0.0100	RT	12/23/15
Barium	EPA 200.7	0.010	mg/L	2.00	RT	12/23/15
Cadmium	EPA 200.5	< 0.001	mg/L	0.005	RT	12/23/15
Chromium	EPA 200.7	< 0.006	mg/L	0.100	RT	12/23/15
Copper	EPA 200.7	< 0.006	mg/L	1.30	RT	12/23/15
Iron	EPA 200.7	0.039	mg/L	0.300	RT	12/23/15
Lead	EPA 200.5	< 0.001	mg/L	0.015	RT	12/23/15
Manganese	EPA 200.7	0.237	mg/L	0.050	RT	12/23/15
Mercury	EPA 245.1	Comment	mg/L	0.0020		
Selenium	EPA 200.5	0.004	mg/L	0.050	RT	12/23/15
Sodium	EPA 200.7	383	mg/L		RT	12/23/15
Potassium	EPA 200.7	7.25	mg/L		RT	12/23/15
Nickel	EPA 200.7	0.013	mg/L		RT	12/23/15
Zinc	EPA 200.7	0.016	mg/L	5.00	RT	12/23/15
Antimony	SM 3113B	< 0.003	mg/L	0.006	EB	1/21/16
Beryllium	EPA 200.5	< 0.001	mg/L	0.004	RT	12/23/15
Thallium	EPA 200.9	< 0.0007	mg/L	0.0020	EB	1/21/16

LOCATION DESCRIPTION: Mexican Hat Well - BOR

REMARKS: COMMENTS: Heavy Metals sample. Comment: Hg not analyzed	FEB 2 2016 District Water Dept. Environmental Oic USEPA Oic Original at Lab Date Sent / Initial
DATE REPORTED:	ANALYST:
DATE REVIEWED: 1/27/14	REVIEWED BY: RW

NTUA LABORATORY P.O.BOX 170 FORT DEFIANCE, AZ 86504 (928) 729-5721 Fax (928) 729-6249

Page _1_ of _1_

17 DEC '15 8:43

Please Print Clearly		the second second							-	-	-	-	-	-	-	-	-	Constanting of	-	Conception of
CLIENT INFORMATION															Res T				a barre	110
Client Name: NTUA Laboratory		Address: PO Box 170		City: Fort Defiance		State:	AZ	Zip	####		Phone:	928-7	29-572	1		Fax				
System Name:		PWSID#/NPDES#		Contact Raquel Whitehou	rse			Site#/Loc	ation					RDC#		District				
Carlos and a second second	Laboratory Analysis Ontio	na (Hanar Matala We	t Chamistor an	d Wastowator)	1	100	1126	1.1.1			<u> </u>	WATE	RANA			WAST	EWAT	ER ANA	LYSIS	
	Laboratory Analysis Optio	7-	et Chemistry an	u wastewater)	1000	100	1000	-								σ				
Heavy Metals : Sb, As, Ba, Be, Cd, G Wet Chemstry : Alkalinity, Ca, Cl, Cd Turbidity, and Temperature	Cr, Cu, Fe, Pb, Mn, Hg, Ni, Se, Ti, orrosivity, F, Total Hardness, Mg, I	Zn NO2, NO3, pH, Phosphate	e, K, Na, SO4, Tota	I Dissolved Solids,		Pres	ervative		ttles							jen Deman	Solids	olids (TDS)		
Wastewater: BOD, 155, 105, pn, 1	emperature, Total Residual Chion								Sample Bo	liance	Metals	hemistry	Copper	a (NO ₃)	(NO ₂)	emical Oxyç	Suspended	Dissolved S	le TDS	10
Client S	Sample ID	NTUA Lab #	Date	Time	NH	Ice	None	Othe	No. of	Comp	Heavy	Wet C	Lead/	Nitrat	Nitrite	Bioch	Total	Total	Potat	RAD'
Mexican Ha	at Well - BOR	155445	12/16/15	10:20 A					1	x	x									
							m													
				TIM	I Tr	251	611													
	State State			PAL	PL	EL	L	1												
		1 5 1 5		Gom	-															
						_														
			1.1			-									-					
	the second s	-							VDIDE	Contraction of the	1	1000		1	-	100000	-	111238	-	Salara .
			SAMPLES MUS	ST BE RECEIVED E	SEFUR	EHOL	DINGI	IMEST	APIKE		25472		-		6985	0008		1000	19992	
Comments :																	7			
LABORATO	ORY USE ONLY	Date:	Time:	12122	SAM	PLES	RELEA	SED B	Y:		322	100	- 2			RECEIN	ED BY:		RE	
SAMPLE CONDIT	ION UPON RECEIPT	12/17/15	8:43A	Sheri	vil	lar	les						Real	ma	la	la -	D	\times		
No. of Containers	1			10			0						l	0.			6			
Temperature	5.000							1.2												
Preserved	YES NO																			

	FIBERQUANT	TICAL SERVICES
	Date Time	
	Determination of Asbestos in	n Water using TEM
JobNumber:	201513411	
Client:	NAVAJO TRIBAL UTILITY AUTH PO BOX 170 FT DEFIANCE, AZ 86504-0170 Office Phone: (928) 729-5721 FAX: (928) 729-6249	RECEIVED
# Samples: 1 Client Job: 155431 Report Date: 12/2	TEM Rec: 12/17/2015 Method: EPA 100.1 Mexican Hat Method: 600 23/2015 Date Analyzed: 12/23/2015	TEM Water PO Number: 45-55072 Routing Number: -
Method and Analysis Samples are analyze water in 1 L containers filtered to minimize los minutes, shaking every	Information: Fiberquant Internal SOP: TE d using the protocols given in EPA method 100.1, as amended having about 200 ml headspace for shaking. There is a 48 hr c s of asbestos fibers due to biological interference. Each sample 5 minutes to disperse any fibers that are present. A measurec kind by a 5 um porce size MCE fiber and a class first. Saveral we	Mw by the 1993 EPA guidence. Samples should be un-preserved deadline between the time the sample is taken and the time it is e is shook for 1 minute, and ultrasonicated for at least 10 d amount of sample is then filtered through a 0.1 um pore size

502A Carbon Evaporator. The carbon encapsulates all of the larger and most of the smaller particulate on the filter. Three mm square pieces of the coated filter are placed on three or more copper TEM grids, and the original filter material is dissolved away in a Jaffe wick and/or condensation washer. The finished replica in carbon containing the particulate is then examined on a JEOL 1200 or Phillips CM 10 transmission electrom microscope at 10,000 to 20,000x magnification. All asbestos fibers > 10um in length are tabulated and characterized as asbestos or non-asbestos using a combination of morphology, electron diffraction characteristics, and elemental composition. The result is calculated in millions of fibers per liter (MFL). The grid is scanned until 20 grid openings have been observed, or until an analytical sensitivity (the hypothetical observation of one fiber) of 0.2 MFL has been reached. The nominal 20 grid opening cut-off is used for those samples containing so much non-asbestos particulate that the desired analytical sensitivity is impractical to attain.

assure that a properly loaded sample is obtained. A portion of each resulting filter (and blanks) is then coated with 100-200 um of carbon in a Denton

The method was designed to determine EPA drinking water compliance. The standard for drinking water is <7 MFL as measured by this method. Fiberquant maintains Arizona Environmental Laboratory license #AZ0633 covering EPA Method 100.1.

Overall, the coefficient of variation can be expected to be approximately 0.5 for analyses in which >20 asbestos fibers have been counted, ranging up to 1.00 for analyses in which only a few asbestos fibers are counted.

The analysis was performed under an ongoing quality assurance program which includes: Lab blanks, prepared with each set of samples and analyzed. Each analyst has suitable background credentials, such as at least a bachelor's degree in geology or chemistry, and has undergone extensive 2-6 month training in TEM techniques and mineralogy specific to TEM asbestos analysis before being allowed to perform client analyses. Unknown reference samples are routinely identified to ensure that each analyst can collect and correctly interpret TEM information. The TEM is aligned and its performance checked daily. Magnification, electron diffraction pattern size, and analytical performance characteristics are calibrated routinely. Samples are re-analyzed sometimes by the same analyst and sometimes by a different analyst in order to determine accuracy and precision. The total of QC analyses (blanks + recounts) are greater than 10% of analyzed samples. Each analyst participates in interlab round robins and proficiency testing in order to show correlation to other lab's analyses. Because TEM samples are not analyzed in batches, which would be traditional for most water analyses, and not every sample has a duplicate or replicate analysis associated with it, it is not possible to include a traditional QC report with the analysis. QC reports are produced monthly, and are available on request. All quality checks perform TEM analysis of asbestos in air samples, and has been found to be proficient in the EPA water proficiency program. Accreditation or proficiency does not imply endorsement by the EPA, any other United States governmental agency or any private agency or association. Each lab analysis refers only to the sample tested, and analytical Services.

Some results may have been calculated using client supplied data, such as volume or area sampled, for which Fiberquant assumes no liability for accuracy.

Job Analysis Not	es:			Copies sent to: 120 Pento
Sampled: Received: Filtered: Analyzed:	12/16/2015 12/17/2015 12/17/2015 12/23/2015	10:20 10:28 13:14 11:10	By: Curley, S	USEPA Ofc NNEPA Original at Lab
			in the second	Date Sent / Initial
5025 S. 3	3rd Street Phoenix,	Arizona 85040-2816	Phone: 602-276-6139	1-800-743-2687 FAX: 602-276-4558

nalysis Resu	lts:								
Lab Number	Client Number	Date	Condition	Filtered Vol (ml)	#GOs	GO Area	MFL>10u	m AsbestosType	Sensitivity (MFL>10um)
								Job Number:	201513411
2015-13411- 1	Mexican Hat Well-BOF	12/16/2015	acceptable	90	5	0.00993	<0.2		0.2

Schal

DAVID M. SCHALLER Analyst:

Printed: 23-Dec-15 Original Print Date: 23-Dec-15

Larry S. Pierg Approved Accreditation Signatory

5025 S. 33rd Street

201513411

QA Report: Job Number: 201513411

1. Calibrations	
TEM magnification. date of last.	12/2/2015
TEM camera constant. date of last.	12/16/2015
EDS performance check (k-factors, resolution, low-e perf.). date of last.	6/26/2015
TEM stage drift, minimum beam size. date of last.	6/26/2015
plasma asher. date of last.	10/22/2015
2. Blanks (1/25 samples required)	Not Required This Job
3. Recounts (1/17 samples required)	Not Required This Job
4. Analyst Performance	
NVLAP proficiency testing	Current
verified counts. cum. % true positives	90.2
verification of diffraction pattern identifications. cum. % correct	99.5
verification of EDS spectra. cum. % correct	97.5

5025 S. 33rd Street Phoenix, Arizona 85040-2816

Phone: 602-276-6139

1-800-743-2687 FAX: 602-276-4558

Fiberg	erq uant, J	ua ^{Inc.}	nt 502	A 5 5.	nc 33n	alyti d St., Ph	cal i	Se	r U1 na 1	ices 85040 602	-276-61	39 Fax	60:	2.27	5-45	58		E6 F6	E	7	E8 F8	E9 F9	E10	E11	E12	E13	E14	E15
TE	W Water Sample Count Sheet 1: EPA 100.1 (600/4-84-043) ple Information :: NAVAJO TRIBAL UTILITY AUTH :: Smp #: Mexican Hat Well-BOR Y: 2015-13411-1 Vol Filtered (ml)															GR	G	7	GR	69	GI	Git	G12	G13	G14	G15		
Method	EPA	100.	1 (60	00/4	-84-1	043)	Cou	ш.		ueet								H6	н	7	HB	H9	HIC	H11	H12	Hes	H14	H15
Sam	ple I	nfo	rm	atio	n													16	1	7	18	19	17		112	113	114	115
Client	NA	VAJ	IO T	RIB/	AL U	TILITY	AUTH						Gri	d Or	ient	atio	n	J6	J	7	J8	J9			J12	J13	J14	J15
Lab #	Smp : 20	#:)15-	-134	111-	· 1	Hat w	en-BO	Vol F	liter	ed (ml)	10		Dra	aw A	sym	Sp	ot	K	K	7	KA	К9	К10	K11	K12	K13	K14	K15
M	CE	-	}-₽C	F	ore	um:	0	.4	_	_ 0.22 _	+ 0.1			-				1.6		7	4	10	1.40	1.14	112	1.13	1.14	1.15
Grid	Info	rm	atio	'n									1	P	7	-	-7		-	-		1.3			-19	115	L 14	110
#Grid	s Prep	ped	i:	3	0	50 Area	: 0.0	0993	3	#GOs to	Count _	5	(1				mb			Ma	Ma	MI	min	M12	M13	M14	MIS
Syste	em 1	nro I N	m ۲		s s	Ac. Vola	tage: 16	Oke	For	other:	keV							NG	N	7	N8	N9	N10	N11	N12	N13	N14	N15
Measur	ed @2	OK S	Scan	ned (ISTK A	lignmen	t:	₽ ch	ecked EDS	6:cal	10 -5-1	not u	sed				x	deno	tes	GO':	on	1st g	rid; O	denot	es GC)'s on	2nd
Fiber	COL	int:	s:)	+1	14	5				A	ceptable	Prep	(>	50%	cove	rage	, >50% i	ntact	, no	folds	, <5	% 01	paque	, 20 go	od GO	5		
Loca	tion	S	itr.	Гур	e	Siz	<i>le</i>	N	Aor	phology		Di	ffra	octio	on E)ata	1					ED	XA I	Data			Ide	nt.'n
		F	BU	MA	CL			Ū	BL		5.2 A	Estimated	CH	A	NO	NO											As	Ň
GO #	STR #	BER	NDLW	TRIX	USTER	Length	Width	BULAR	00XY	Negative #	Row Spacing	In-Row Spacing	R Y	Н	NASB	PATT	File #		N .	Mg	S	C.	Fo	Other	Fil	•#	BTYPE	NASB
HU	5 Min									_							-					_				_		
Kr	NUD	-	-		_			-	-				-	-	-	-		-		-		-	-			-		
-																												
																											_	
		-	-	-	_			-					-	-	-					-		-				-		
-																								_				
					_	L												_										
Grid S	torage			14				Π	-	A	cceptable	Prep -	_ (>	50%	COVI	erage	2, >50%	ntact	t, no	fold	s, <5	% 0	paque	, 20 ga		is I		
69	NY1																3.4.3									_		
-			-						-				\vdash	+	-	-			┢	-		-		-	-	-		
		E																										
-	_		-	-	-				-				+	-	-	-		-	┢	-	-	-			-			
																		_										
Grid S	torage	Ļ	16	In	1-	9		_	L	A	cceptable	Prep	. (>	50%	COVI	erage	2, >50% 1	intac	t, no	fold	s, <5	5% 0	paque	, 20 g	ood GC)s		
FII	NO	Ē	T	Ī										Γ	Γ				L									
-	-		-					-	-				+-	+	-	-			┢	-	-	-			-	_	-	-
		E																_										
-	-	┝	1	AN1	-	-		┝	-				+	-	\vdash	-		-	┢	-	-	-			-		-	
-			6	-																								
-		1		-	-	+	-	-	-				-	-	-	-			-	-	-	-			-			
Abbrevi	ations.	NSD	No st	ructu	res De	elected, CH	-chrysoti	le. GR	- grur	onerite, AN-anth	ophyllite.	IR-tremole	ic, Al	P-am	shibol	e. GO	-grid openi	ny. Na	A-nor	1-asbe	stos							
Notes			SIM	015	101	ON																						
Tota	ls:	4	сн >	10		Q	A1	P > 1	0	0	GO	Counte	d	5	T	R	esults:	2	Str/n	nm2		22	0	MJ	il.	40	.2	
						0			n	1	0	0		AA														
Ana	yst:				6	1		2		1	~	ch		K	-	2		Dat	te:	_		12	-	23-	15		_	
														-														

FIBERQUAN		Analy ONL	sis Method Requested	Tu	rn-ar (circ	ound-t le one)	Ime
	NALYTICAL SERVICES			Ru	sh	Norm	Ext.
Fiberquant Analytical S Phoenix, AZ 85040; Phone: 602-276 info@fiberquant.com	Services 5025 S. 33 ⁻⁴ St.; -6139; FAX: 602-276-4558;	Asbestos by PLM	Improved Interim Analyze All ATPF If so then by Layer or Sample Single Layer Protocol; Yes No	Urg. Rush <3 hrs	<6 hrs∙	1-3 days	15-30 daγs
Analysis Request/Cha	un-of-Custody Form	Flbers	7400(Area)		hr	24hr	 .
Submitted by (Company) Navajo Tri	bal Utility Authority	by PCM) ;		
Address PO Box 170		by TEM	AIR: AHERA 🔲 Mod. AHERA 🗖	<6h	r	24 hr	3-56
City, State, Zip Code Fort Defian	ce, AZ 86504		Water'; Water 🛛 Sludge 🗆	1-20	đ		NIA
Phone (928) 729 5721	FAX (928) 729-6249		Annex2 : Chatfield 🗌 🛛 Full 🗌				
			Vacuum Dusi (ASTM)	3-50	3	5-10d	N/A
Email raquelw@ntua.com	-	Pb by	Analyte: Pb Other	<6 h	rs	2-3	N/A
Invoice to (Company) Navajo Triba	I Utility Authority	FLAA	Malríx: Filler: MCE	- "		days	
Address PO Box 170		, r	Soll []	_			
City, State, Zip Code Fort-Defiance	e, AZ 86504		Wipe 🖸	_			
at (928) 729 5721	riv (928) 729-6349		Initial here certifying wipes used are ASTM E1792 compliant				
Phone (920) 129-0121	FAX (920) 729-0049	Fungi	Air Sample: Zei 🗌 Aller 🗌 Oth 🗋	<6 hi	rs	1-2	N/A
Contact (print) Raquel Whiteho	rse		ID/Count: Bulk Swab			days	1
0	·			-1			
Sampleo oy (signature)	•		Other		`		
Job Number or Project Name 15543	31	Dust		<4h	r i	24h	N/A
PONumber 45-55072-	•			<u> </u>			
		Other		Cal	1	Cali	1

· _

Sample Number	Description/Location Enclude agarted	olmakerlexp, Data)	Sample Date	Sample Time	Vol/Area
1)	Mexican Hat Well	-BOR	10/16/15	1020	IL
2)					
3) .	-		_		
4)					
5)					
6)					
7)	}				
8)					
9)					
10)	•				· · ·
11)					
12)					
13)					
14)					
15)					
16)					
17)		•			
18)					
19)		1 e.a.			
20)					
1)Relinquished by	party Date: 12/10/15 Time: 1345	3)Relinquished by:		Date:	Fime:
2)Received by	J dam://7//5 Time:1028	4)Received by:		Date:	Fime:
* TEM Water: Sample's nito Required by State of Arlana	Print Name	X		Page	of
Review of Analysis Re	quest (Initials)			2015	13411

Note: Data completed by client (including number and identity of samples) is assumed to be correct until it is verified at time of sample preparation.

.

PART XVIII SECONDARY DRINKING WATER STANDARDS

§ 1801 PURPOSE

This part establishes the Navajo Nation's Secondary Drinking Water Standards pursuant to § 2532 of the NNSDWA. These standards control contaminants in drinking water that primarily affect aesthetic qualities relating to public acceptance of drinking water. At considerably higher concentrations of these contaminants, health implications may exist as well as aesthetic degradation. These standards serve as a goal and are not enforceable by the NNEPA.

§ 1802 SECONDARY MAXIMUM CONTAMINANT LEVELS

The secondary maximum contaminant levels (SMCL) for public water systems are as follows:

TABLE 1800.1 Secondary Maximum Contaminant Level

CONTAMINANT	LEVEL
Aluminum	0.05 to 0.2 mg/L
Chloride	250 mg/L
Color	15 COLOR UNITS
Copper	1.0 mg/L
Corrosivity	Non-corrosive
Fluoride	2.0 mg/L
Foaming Agents	0.5 mg/L
Iron	0.3 mg/L
Manganese	0.05 mg/L
Odor	3 threshold odor number
рН	6.5-8.5
Silver	0.1 mg/L
Sulfate	250 mg/L
Total Dissolved Solids (TDS)	500 mg/L
Zinc	5 mg/L

§1803 ANALYTICAL METHODS

- A. It is recommended that the parameters in these standards should be monitored at intervals no less frequent than the monitoring performed for inorganic chemical contaminants listed in the NNPDWR as applicable to CWSs. More frequent monitoring would be appropriate for specific parameters such as pH, color, odor, or others under certain circumstances as recommended by the Director.
- B. Measurement of pH, copper and fluoride may be conducted with one of the methods in §402, Table 400.4. Analyses of aluminum, chloride, foaming agents, iron, manganese, odor, silver, sulfate, total dissolved solids (TDS) and zinc may be conducted with the methods in the following table. Criteria for analyzing aluminum, copper, iron, manganese, silver and zinc samples with digestion or directly without digestion, and other analytical test procedures are contained in *Technical Notes on Drinking Water Methods*, EPA-600/R-94-173, October 1994, which is available at NTIS PB95-104766.

Table 1800.2 M	ETHODOLOGY
----------------	------------

Contaminant	EPA	ASTM ³	SM4	Other
Aluminum	² 200.7		3120B	

	² 200.8 ² 200.9		3113B 3111D	
Chloride	¹ 300.0	D4327-91	4110 4500-Cl-D	
Color			2120В	
Foaming Agent			5540C	
Iron	² 200.7 ² 200.9	3120B 3111B 3113B		
Manganese	² 200.7 ² 200.8 ² 200.9		3120B 3111B 3113B	
Odor			2150B	
Silver	² 200.7 ² 200.8 ² 200.9		3120B 3111B 3113B	I-3720-85 ⁵
Sulfate	¹ 300.0 ¹ 375.2	D4327-91	4110 4500-SO ₄ -F 4500-SO ₄ -C, D	
TDS		2540C		
Zinc	inc ² 200.7 ² 200.8		3120B 3111B	

1. "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA-600/R-93-100, August 1993. Available at NTIS, PB94-121811.

2. "Methods for the Determination of Metals in Environmental Samples-Supplement I", EPA-600/R-94-111, May 1994. Available at NTIS, PB94-184942.

3. The procedures shall be done in accordance with the Annual Book of ASTM Standards, 1994, Vols. 11.01 and 11.02, American Society for Testing and Materials. Copies may be obtained from the American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103. Copies may be inspected at EPA's Drinking Water Docket, 401 M Street SW, Washington, D.C. 20460; or at the Office of the Federal Register, 800 North Capitol Street, NW, Suite 700, Washington, D.C.

4. The procedures shall be done in accordance with the 18th edition, or latest edition, of Standard Methods for the Examination of Water and Wastewater, 1992. American Public Health Association. Copies may be obtained from the American Public Health Association, 1015 Fifteenth Street NW., Washington, D.C. 20005. Copies may be inspected at EPA's Drinking Water Docket, 401 M. Street, SW., Washington, DC 20460; or at the Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, D.C.

5. Available from Books and Open-File Reports Section, USGS Federal Center, Box 25425, Denver, CO, 80225-0425.

§ 1804 COMPLIANCE WITH SECONDARY MAXIMUM CONTAMINANT LEVEL AND PUBLIC NOTIFICATION FOR FLUORIDE

- A. CWSs, as defined in § 104 of these regulations, that exceed the SMCL for fluoride as determined by the last single sample taken in accordance with the requirements of § 406.1 of the NNPDWR, but not to exceed the MCL for fluoride as specified by § 204 of the NNPDWR, shall provide the notice described in subsection (B) of this section to all billing units annually, all new billing units at the time service begins, and the Director.
- B. The notice required by subsection (A) of this section shall contain the following language, including the language necessary to replace the superscripts:

PUBLIC NOTICE

Dear User:

The Navajo Nation Environmental Protection Agency and the U.S. Environmental Protection Agency require that we send you this notice on the level of fluoride in your drinking water. The drinking

water in your community has a fluoride concentration of 1 milligrams per liter (mg/l).

Both the Navajo Nation Primary Drinking Water Drinking Regulations and federal regulations require that fluoride, which may occur naturally in your water supply, not exceed a concentration of 4.0 mg/l in drinking water. This is an enforceable standard called a Maximum Contaminant Level (MCL), and it has been established to protect the public health. Exposure to drinking water levels above 4.0 m/l for many years may result in some cases of crippling skeletal fluorosis, which is a serious bone disorder.

Both Navajo Nation and federal law also require that we notify you when sampling indicates that the fluoride in your drinking water exceeds 2.0 mg/l. This is intended to alert families about dental problems that might affect children under nine years of age. The fluoride concentration of your water exceeds this guideline.

Fluoride in children's drinking water at levels of approximately 1 mg/l reduces the number of dental cavities. However, some children exposed to levels of fluoride greater than about 2.0 mg/l may develop dental fluorosis. Dental fluorosis, in its moderate and severe forms, is a brown staining and/or pitting of the permanent teeth.

Because dental fluorosis occurs only when developing teeth (before they erupt from the gums) are exposed to elevated fluoride levels, households without children are not expected to be affected by this level of fluoride. Families with children under the age of nine are encouraged to seek other sources of drinking water for their children to avoid the possibility of staining and pitting.

Your water supplier can lower the concentration of fluoride in your water so that you will still receive the benefits of cavity prevention while the possibility of stained and pitted teeth is minimized. Removal of fluoride may increase your water costs. Treatment systems are also commercially available for home use. Information on such systems is available at the address given below. Low fluoride bottled drinking water that would meet all standards is also commercially available.

For further information, contact 2 at your water system.

 $^{^{1}\}mathrm{PWS}$ shall insert the compliance result which triggered notification under this part.

 $^{^{2}\}mathrm{PWS}$ shall insert the name, address, and telephone number of a contact person at the PWS.

PART II MAXIMUM CONTAMINANT LEVELS

§ 201 PURPOSE

The purpose of this part is to define the Maximum Contaminant Levels, or MCL, for each contaminant.

§ 202 SPECIAL MAXIMUM CONTAMINANT LEVELS for ARSENIC and NITRATE

- A. The MCL for arsenic of 0.010 mg/L or 10 parts per billion (10ppb) applies to community water systems and non-transient, non-community water systems and shall become effective January 23, 2006.
 - 1. Compliance with the MCL for arsenic is calculated pursuant to § 405.
 - The owner/operator shall report the most recent arsenic levels in their water systems. These levels and health effects shall be reported in the Consumer Confidence Reports required by Part XII of these regulations.
- B. The MCL for nitrate is 10mg/L or 10 parts per million (10ppm).
- C. At the discretion of the Director, nitrate levels not exceeding 20 mg/L may be allowed in a non-community water system if the public water system owner or operator demonstrates to the satisfaction of the Director that:
 - 1. Such water will not be available to children under six months of age;
 - 2. There will be continuous public notification stating that nitrate levels exceed 10 mg/L and lists the potential health effects due to exposure;
 - 3. PWSSP shall be notified annually of nitrate levels that exceed 10 mg/L; and
 - 4. No adverse health effects shall result.

§ 203 MAXIMUM CONTAMINANT LEVELS and MAXIMUM CONTAMINANT LEVEL GOALS FOR INORGANIC CONTAMINANTS

- A. Applicability
 - 1. The MCLs for inorganic contaminants (1)-(10), (12)-(13), and (17)-(18) of Table 200.1 applies to community water systems (CWS) and non-transient, non-community water systems (NTNCWS).
 - 2. The MCL specified in (11) of Table 200.1 only applies to CWSs.
 - 3. The MCLs specified in (14)-(16) of Table 200.1 apply to CWSs; NTNCWSs; and transient non-community water systems (TNCWS).
 - 4. The MCLs specified in (14), (15) and (16) of Table 200.1 apply to consecutive public water systems. Other MCL sampling requirements will be determined, by the Director, after a sanitary survey of the system, a wellhead protection delineation or a vulnerability assessment survey indicates that further sampling requirements are needed. MCL sampling for asbestos (4) is required for those systems with asbestos-cement pipe in the distribution system.
 - 5. BAT(s) are the best available technology, treatment technique, or other means available for achieving compliance with the MCLs for inorganic contaminants and are identified in Table 200.1.

TABLE 200.1 MAXIMUM CONTAMINANT LEVELS, MAXIMUM CONTAMINANT LEVEL GOALS with EFFECTIVE DATES for INORGANIC CONTAMINANTS

#	EFFECTIVE DATE	CONTAMINANT	MCL mg/L	MCLG mg/L	BATS
1	3/21/1996	Antimony	0.006	0.006	2,7

2	3/21/1996	Arsenic ⁴	0.05	Zero	1,2,5,6,7,9,125	
3	1/23/2006	Arsenic ⁴	0.0106	Zero	1,2,5,6,7,9,125	
			7 million	7 million fibers/liter		
4	3/21/1996	Asbestos	fibers/liter (longer than 10µm)	(longer than 10µm)	2,3,8	
5	3/21/1996	Barium	2	2	5,6,7,9	
б	3/21/1996	Beryllium	0.004	0.004	1,2,5,6,7	
7	3/21/1996	Cadmium	0.005	0.005	2,5,6,7	
8	3/21/1996	Chromium	0.1	0.1	2,5,6 ² , 7	
9	3/21/1996	Copper 1.3		1.3		
10	3/21/1996	Cyanide (as free cyanide)	0.2	0.2	5,7,10	
11	3/21/1996	Fluoride	4.0 4.0			
12	3/21/1996	Lead	0.015	Zero		
13	3/21/1996	Mercury	0.002	0.002	2 ¹ ,4,6 ¹ ,7 ¹	
14	3/21/1996	Nitrate	10 (as Nitrogen)	10 (as Nitrogen)	5,7,9	
15	3/21/1996	Nitrite	1 (as Nitrogen)	l (as Nitrogen)	5,7	
16	3/21/1996	Total Nitrate and Nitrite	10 (as Nitrogen)	10 (as Nitrogen)		
17	3/21/1996	Selenium	0.05	0.05	1,2 ³ ,6,7,9	
18	3/21/1996	Thallium	0.002	0.0005	1,5	

 $^{\rm 1}$ BAT only if influent Hg concentrations #10 micrograms/liter.

 $^{\rm 2}$ BAT for Chromium III only.

 $^{\scriptscriptstyle 3}$ BAT for Selenium IV only.

 4 BATs for Arsenic V. Pre-oxidation may be required to convert Arsenic III to Arsenic V.

 $^{\scriptscriptstyle 5}$ To obtain high removals, iron to arsenic ratio must be at least 20:1.

 $^{\rm 6}$ This MCL will replace the 0.05 mg/L MCL and will apply to CWS and NTNCWS, effective January 23, 2006.

Key	to	BAT(s)	in	Table	200.1
-----	----	--------	----	-------	-------

6. The Administrator, pursuant to section 1412 of the Safe Drinking Water Act (SDWA), hereby identifies in the following table the affordable technology, treatment technique or other

means available to systems serving 10,000 persons or fewer for achieving compliance with the maximum contaminant level for arsenic:

Small system compliance technology	Affordable for listed small system categories ³
Activated Alumina (centralized)	All size categories.
Activated Alumina (Point-of-Use) ⁴	All size categories.
Coagulation/Filtration ⁵	501-3,300 and 3,301-10,000.
Coagulation-assisted Micro-filtration	501-3,300 and 3,301-10,000.
Electrodialysis reversal ⁶	501-3,300 and 3,301-10,000.
Enhanced coagulation/Filtration	All size categories.
Enhanced lime softening (pH>10.5)	All size categories.
Ion Exchange	All size categories.
Lime Softening	501-3,300 and 3,301-10,000.
Oxidation/Filtration ⁷	All size categories.
Reverse Osmosis (centralized) ⁶	501-3,300 and 3,301-10,000.
Reverse Osmosis (Point-of-Use) ⁴	All size categories.

TABLE 200.2 SMALL SYSTEM COMPLIANCE TECHNOLOGIES (SSCTS)¹ FOR ARSENIC²

¹Section 1412 (b)(4)(E)(ii) of the SDWA specifies that SSCTs must be affordable and technically feasible for small systems.

²SSCTs for Arsenic V. Pre-oxidation may be required to convert Arsenic III to Arsenic V.

 3 The Act (ibid.) Specifies three categories of small systems; (i) those serving 25 or more, but fewer than 501, (ii) those serving more than 500, but fewer than 3,301, and (iii) those serving more than 3,300 but fewer than 10,001.

⁴When POU or POE devices are used for compliance, programs to ensure proper long-term operation, maintenance, and monitoring must be provided by the water system to ensure adequate performance. ⁵Unlikely to be installed solely for arsenic removal. May require pH adjustment to optimal range if high

removals are needed.

⁶Technologies reject a large volume of water, may not be appropriate for areas where water quantity may be an issue.

⁷To obtain high removals, iron to arsenic ratio must be at least 20:1.

§ 204 MAXIMUM CONTAMINANT LEVELS and MAXIMUM CONTAMINANT LEVEL GOALS FOR ORGANIC CONTAMINANTS

1. The following MCLs for organic contaminants apply to CWSs and NTNCWSs.

TABLE 200.3 MAXIMUM CONTAMINANT LEVELS and MAXIMUM CONTAMINANT LEVEL GOALS for VOLATILE ORGANIC CHEMICALS with EFFECTIVE DATES

#	CAS ¹ No.	EFFECTIVE DATES	CONTAMINANT	MCL mg/L	MCLG mg/L
1	75-01-4	3/21/1996	Vinyl chloride	0.002	0.00
2	71-43-2	3/21/1996	Benzene	0.005	0.00
3	56-23-5	3/21/1996	Carbon tetrachloride	0.005	0.00
4	107-06-2	3/21/1996	1,2-Dichloroethane	0.005	0.00
5	79-01-6	3/21/1996	Trichloroethylene	0.005	0.00

A. Applicability

6	106-46-7	3/21/1996	para-Dichlorobenzene	0.075	0.075
7	75-35-4	3/21/1996	1,1-Dichloroethylene	0.007	0.007
8	71-55-6	3/21/1996	1,1,1-Trichloroethane	0.2	0.20
9	156-59-2	3/21/1996	cis-1,2-Dichloroethylene	0.07	0.07
10	78-87-5	3/21/1996	1,2-Dichloropropane	0.005	0.00
11	100-41-4	3/21/1996	Ethylbenzene	0.7	0.7
12	108-90-7	3/21/1996	Monochlorobenzene	0.1	0.1
13	95-50-1	3/21/1996	o-Dichlorobenzene	0.6	0.6
14	100-42-5	3/21/1996	Styrene	0.1	0.1
15	127-18-4	3/21/1996	Tetrachloroethylene	0.005	0.00
16	108-88-3	3/21/1996	Toluene	1	1
17	156-60-5	3/21/1996	trans-1,2-Dichloroethylene	0.1	0.1
18	1330-20-7	3/21/1996	Xylenes (total)	10	10
19	75-09-2	3/21/1996	Dichloromethane	0.005	0.00
20	120-82-1	3/21/1996	1,2,4-Trichlorobenzene	0.07	0.07
21	79-00-5	3/21/1996	1,1,2-Trichloroethane	0.005	0.003

¹Chemical Abstract Service Number

^{2.} The following MCLs and MCLGs for synthetic organic contaminants apply to CWSs and NTNCWS.

TABLE 200.4	MAXIMUM	CONTAMINANT	LEVELS,	MAXIMUM	CONTAMINANT	LEVEL	GOALS	with	EFFECTIVE	DATES	for
SYNTHETIC ORGANIC CHEMICALS											

#	CAS No.	EFFECTIVE DATES	CONTAMINANT	MCL mg/L	MCLG mg/L
1	15972-60-8	3/21/1996	Alachlor	0.002	0.00
2	116-06-3	3/21/1996	Aldicarb	0.003	0.001
3	1646-87-3	3/21/1996	Aldicarb sulfoxide	0.004	0.001
4	1646-87-4	3/21/1996	Aldicarb sulfone	0.002	0.001
5	1912-24-9	3/21/1996	Atrazine	0.003	0.003
6	1563-66-2	3/21/1996	Carbofuran	0.04	0.04
7	57-74-9	3/21/1996	Chlordane	0.002	0.00
8	96-12-8	3/21/1996	Dibromochloropropane	0.0002	0.00
9	94-75-7	3/21/1996	2,4-D	0.07	0.07
10	106-93-4	3/21/1996	Ethylene dibromide	0.00005	0.00

§200 MCLs-NNPDWR

11	76-44-8	3/21/1996	Heptachlor	0.0004	0.00
12	1024-57-3	3/21/1996	Heptachlor epoxide	0.0002	0.00
13	58-89-9	3/21/1996	Lindane	0.0002	0.0002
14	72-43-5	3/21/1996	Methoxychlor	0.04	0.04
15	1336-36-3	3/21/1996	Polychlorinated biphenyls	0.0005	0.00
16	87-86-5	3/21/1996	Pentachlorophenol	0.001	0.00
17	8001-35-2	3/21/1996	Toxaphene	0.003	0.00
18	93-72-1	3/21/1996	2,4,5-TP	0.05	0.05
19	50-32-8	3/21/1996	Benzo[a]pyrene	0.0002	0.00
20	75-99-0	3/21/1996	Dalapon	0.2	0.2
21	103-23-1	3/21/1996	Di(2-ethylhexyl)adipate	0.4	0.4
22	117-81-7	3/21/1996	Di(2-ethylhexyl)phthalate	0.006	0.00
23	88-85-7	3/21/1996	Dinoseb	0.007	0.007
24	85-00-7	3/21/1996	Diquat	0.02	0.02
25	145-73-3	3/21/1996	Endothall	0.1	0.1
26	72-20-8	3/21/1996	Endrin	0.002	0.002
27	1071-83-6	3/21/1996	Glyphosate	0.7	0.7
28	118-74-1	3/21/1996	Hexachlorobenzene	0.001	0.00
29	77-47-4	3/21/1996	Hexachlorocyclopentadiene	0.05	0.05
30	23135-22-0	3/21/1996	Oxamyl (Vydate)	0.2	0.2
31	1918-02-1	3/21/1996	Picloram	0.5	0.5
32	122-34-9	3/21/1996	Simazine	0.004	0.004
33	1746-01-6	3/21/1996	2,3,7,8-TCDD (Dioxin)	3x10 ⁻⁸	0.00

B. The Administrator pursuant to §1412 of the SDWA has identified as indicated in Table 200.5 the granular activated carbon (GAC), packed tower aeration (PTA), or oxidation (OX) techniques as the best technology treatment technique or other means available for achieving compliance with the MCL for organic contaminants identified in subsections (A)(1) and (A)(2)of this section:

TABLE 200.5 BAT FOR ORGANIC CONTAMINANTS (SYNTHETIC AND VOLATILE)

#	CAS No.	CONTAMINANT	GAC	PTA	ох
1	15972-60-8	Alachlor	x		
2	116-06-3	Aldicarb	х		
3	1646-88-4	Aldicarb sulfone	х		
4	1646-87-3	Aldicarb sulfoxide	х		
5	1912-24-9	Atrazine	x		
6	71-43-2	Benzene	х	Х	
7	50-32-8	Benzo[a]pyrene	x		
8	1563-66-2	Carbofuran	х		
9	56-23-5	Carbon tetrachloride	Х	Х	
10	57-74-9	Chlordane	Х		
11	75-99-0	Dalapon	х		
12	94-75-7	2,4-D	х		
13	103-23-1	Di(2-ethylhexyl)adipate	Х	Х	
14	117-81-7	Di(2-ethylhexyl)phthalate	Х		
15	96-12-8	Dibromochloroproprane (DBCP)	х	Х	
16	95-50-1	o-Dichlorobenzene	х	Х	
17	106-46-7	para-Dichlorobenzene	х	Х	
18	107-06-2	1,2-Dichloroethane	х	Х	
19	75-35-4	1,1-Dichloroethylene	х	Х	
20	156-59-2	cis-1,2-Dichloroethylene	х	Х	
21	156-60-5	trans-1,2-Dichloroethylene	х	Х	
22	75-09-2	Dichloromethane		Х	
23	78-87-5	1,2-Dichloropropane	х	Х	
24	88-85-7	Dinoseb	х		
25	85-00-7	Diquat	х		
26	145-73-3	Endothall	х		

27	72-20-8	Endrin			
28	100-41-4	Ethylbenzene		x	
29	106-93-4	Ethylene Dibromide (EDB)	Х	х	
30	1071-83-6	Glyphosate			Х
31	76-44-8	Heptachlor	х		
32	1024-57-3	Heptachlor epoxide	Х		
33	118-74-1	Hexachlorobenzene	Х		
34	77-47-3	Hexachlorocyclopentadiene	Х	х	
35	58-89-9	Lindane	Х		
36	72-43-5	Methoxychlor	х		
37	108-90-7	Monochlorobenzene	Х	x	
38	23135-22-0	Oxamyl (Vydate)	Х		
39	87-86-5	Pentachlorophenol	х		
40	1918-02-1	Picloram	х		
41	1336-36-3	Polychlorinated biphenyls (PCB)	х		
42	122-34-9	Simazine	х		
43	100-42-5	Styrene	х	х	
44	1746-01-6	2,3,7,8-TCDD (Dioxin)	Х		
45	127-18-4	Tetrachloroethylene	Х	x	
46	108-88-3	Toluene	Х	х	
47	8001-35-2	Toxaphene	х		
48	93-72-1	2,4,5-TP (Silvex)	х		
49	120-82-1	1,2,4-Trichlorobenzene	х	x	
50	71-55-6	1,1,1-Trichloroethane	Х	х	
51	79-00-5	1,1,2-Trichloroethane	Х	х	
52	79-01-6	Trichloroethylene	Х	х	
53	75-01-4	Vinyl chloride		Х	

54	1330-20-7	Xylene	Х	Х	

§ 205 MAXIMUM CONTAMINANT LEVELS and MAXIMUM CONTAMINANT LEVEL GOALS FOR MICROBIOLOGICAL CONTAMINANTS

A. A public water system must determine compliance with the MCL for total coliforms in subsections(B) and (C) of this section for each month in which it is required to monitor for total coliforms.

B. Applicability

1. Each CWS, NTNCWS, TNCWS and Consecutive system is required to comply with this section. The MCL for total coliform is based on the presence or absence in a sample, rather than coliform density.

TABLE 200.6 MAXIMUM CONTAMINANT LEVELS and MAXIMUM CONTAMINANT LEVEL GOALS FOR MICROBIOLOGICAL CONTAMINANTS

#	CONTAMINANT	MCL	MCLG
1	Giardia lamblia	zero	zero
2	Viruses	zero	zero
3	Legionella	zero	zero
4	Total coliforms (including fecal coliforms and Escherichia coli)	zero	zero
5	Cryptosporidium	zero	zero

C. Compliance

- 1. For a system that collects 40 or more samples per month, the system is in compliance with the MCL for total coliforms if no more than 5.0% of the samples collected during the month are total coliform-positive.
- 2. For a system that collects less than 40 samples per month, the system is in compliance with the MCL for total coliforms if no more than one sample collected during the month is total coliform-positive.
- 3. Any fecal coliform-positive repeat sample or E.coli-positive repeat sample, or any total coliform-positive repeat sample following a fecal coliform-positive or E-coli-positive routine sample constitutes a violation of the MCL for total coliforms. For purposes of the public notification requirements in Part VI, this is a violation that may pose an acute risk to health.
- D. The following are identified as the best available technology, treatment techniques, or other means to achieve compliance with the MCL for total coliforms in subsections (B) and (C) of this section:
 - 1. Protection of wells from total coliform contamination by appropriate construction and location;
 - 2. Maintain a disinfectant residual throughout the distribution system;
 - 3. Proper maintenance of the distribution system including appropriate pipe replacement and repair procedures, adequate flushing programs, proper operation and maintenance of storage tanks and reservoirs, and continual maintenance of positive water pressure in all parts of the distribution system;
 - 4. Filtration and/or disinfection of surface water, as described in Parts VIII and XIII (General Requirements for Surface Water Treatment and Enhanced Surface Water Treatment), or disinfection of groundwater using strong oxidants such as chlorine, chlorine dioxide, or ozone;

- 5. For systems using groundwater, compliance with the requirements of an NNEPA-approved Wellhead Protection Program that is developed and implemented pursuant to § 2538 of the NNSDWA and Part XVII of these regulations-Wellhead Protection Regulations; and
- 6. Proper placement, maintenance and testing of backflow prevention and cross connection devices, as described in Part XX of these regulations.

§ 206 MAXIMUM CONTAMINANT LEVELS FOR TURBIDITY

The MCL for turbidity are applicable to both community and non-community water systems using surface water sources in whole or in part. The MCL for turbidity in drinking water, measured at a representative entry point(s) to the distribution system are:

- A. One turbidity unit (TU), as determined by a monthly average pursuant to § 414, except that five or fewer turbidity units may be allowed if the public water system owner or operator can demonstrate to the Director that the higher turbidity level does not:
 - 1. Interfere with disinfection;
 - Prevent maintenance of an effective disinfectant agent throughout the distribution system; or
 - 3. Interfere with microbiological determinations.
- B. Five turbidity units based on an average for two consecutive days pursuant to § 414.

§ 207 MAXIMUM CONTAMINANT LEVELS and MAXIMUM CONTAMINANT LEVEL GOALS for DISINFECTION BYPRODUCTS

- A. Applicability
 - 1. The MCLs and MCLGs for Disinfection Byproducts are as follows:

TABLE 200.7 MCLs FOR DISINFECTION BYPRODUCTS

Disinfection Byproduct	MCL (mg/L)	MCLG (mg/L)
Total Trihalomethanes (TTHM) Haloacetic acids (five) (HAA5) Bromate Chlorite	0.080 0.060 0.010 1.0	Zero 0.8
Bromodichloromethane Bromoform Chloroform Dichloroacetic Acid Trichloroacetic Acid Dibromochloromethane Monochloroacetic Acid		Zero Zero 0.07 Zero 0.02 0.06 0.07

B. Compliance Dates

- 1. All CWSs and NTNCWSs:
 - a. Part VIII General Requirements for Surface Water Systems serving 10,000 or more persons must comply with this section upon promulgation of these regulations;
 - b. Part VIII General Requirements for Surface Water Systems serving fewer than 10,000 persons must comply with this section beginning January 1, 2004;
 - c. Public water systems using only ground water not under the direct influence of surface water must comply with this section beginning January 1, 2004.
 - d. All systems must comply with the MCLs listed in this section until the date specified for Part XXIII compliance in §2300(C).
 - i. Part XXIII MCLs for TTHM and HAA5 must be complied with as a locational running annual average at each monitoring location beginning with the date specified for Part XXIII compliance in §2301(C).

- 2. A system that is installing GAC or membrane technology to comply with this section may apply to the Director for an extension of up to 24 months past the date of promulgation of these regulations, but not beyond December 31, 2003. In granting the extension, the Director must set a schedule for compliance and may specify any interim measures that the system must take. Failure to meet the schedule or interim treatment requirements constitutes a violation of the NNPDWR.
- C. The Administrator, pursuant to § 1412 of the SDWA, has identified the following as the best available technology, treatment techniques, or other means available to achieve compliance with the MCLs for disinfection byproducts identified in subsection (A) of this section:

Disinfection Byproduct	Best Available Technology		
ТТНМ	Enhanced coagulation or enhanced softening or GAC10, with chlorine as the primary and residual disinfectant.		
наа5	Enhanced coagulation or enhanced softening or GAC10, with chlorine as the primary and residual disinfectant.		
Bromate	Control of ozone treatment processes to reduce production of bromate.		
Chlorite	Control of treatment processes to reduce disinfectant demand and control disinfection treatment processes to reduce disinfectant levels.		

TABLE 200.8BATS FOR DISINFECTION BYPRODUCTS

D. The Administrator, pursuant to section 1412 of the SDWA, hereby identifies the following as the best technology, treatment techniques, or other means available for achieving compliance with the maximum contaminant levels for TTHM and HAA5 identified in this subsection (D) for all systems that disinfect their source water:

Disinfection byproduct	Best available technology	
Total trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5).	Enhanced coagulation or enhanced softening, plus GAC10; or nanofiltration with a molecular weight cutoff <1000 Daltons; or GAC20.	

E. The Administrator, pursuant to section 1412 of the SDWA, hereby identifies the following as the best technology, treatment techniques, or other means available for achieving compliance with the maximum contaminant levels for TTHM and HAA5 identified in this subsection (E) for consecutive systems that buy or otherwise receive finished water:

Disinfection byproduct	Best available technology
Total trihalomethanes (TTHM) and Haloacetic acids (five) (HAA5).	Systems serving ≥10,000: Improved distribution system and storage tank management to reduce residence time, plus the use of chloramines for disinfectant residual maintenance Systems serving ≤10,000: Improved distribution system and storage tank management to reduce residence time

§ 208 MAXIMUM RESIDUAL DISINFECTANT LEVELS and MAXIMUM RESIDUAL DISINFECTANT LEVEL GOALS

- A. Applicability
 - 1. The Maximum Residual Disinfectant Levels and Maximum Residual Disinfectant Level Goals are as follows:

 TABLE 200.9
 MAXIMUM RESIDUAL DISINFECTANT LEVELS (MRDLs) and

 MAXIMUM RESIDUAL DISINFECTANT LEVEL GOALS (MRDLGs)

Disinfectant residual	MRDL (mg/L)	MRDLG (mg/L)
Disinfectant residual	MRDL (mg/L)	MRDLG (mg/L)

Chlorine	4.0 (as Cl_2)	4.0 (as Cl ₂)
Chloramines	4.0 (as Cl_2)	4.0 (as Cl ₂)
Chlorine dioxide	0.8 (as ClO_2)	0.8 (as ClO ₂)

B. Compliance Dates

- 1. All CWSs and NTNCWSs:
 - a. Part VIII General Requirements for Surface Water Systems serving 10,000 or more persons must comply with this section upon promulgation of these regulations;
 - b. Part VIII General Requirements for Surface Water Systems serving fewer than 10,000 persons must comply with this section beginning January 1, 2004;
 - c. Public water systems using only ground water, not under the direct influence of surface water, must comply with this section beginning January 1, 2004.

2. All TNCWSs:

- a. Part VIII General Requirements for Surface Water Systems serving 10,000 or more persons and using chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL upon promulgation of these regulations;
- b. Part VIII General Requirements for Surface Water Systems serving fewer than 10,000 persons and using chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2004;
- c. Public water systems using only ground water, not under the direct influence of surface water, and using chlorine dioxide as a disinfectant or oxidant must comply with the chlorine dioxide MRDL beginning January 1, 2004.
- C. The Administrator, pursuant to §1412 of the SDWA, has identified the following as the best available technology, treatment techniques, or other means available to achieve compliance with the maximum residual disinfectant levels identified in subsection (A) of this section: control of treatment processes to reduce disinfectant demand and control of disinfection treatment processes to reduce disinfectant levels.

§ 209 MAXIMUM CONTAMINANT LEVELS AND MAXIMUM CONTAMINANT LEVEL GOALS FOR RADIONUCLIDES

- A. Applicability
 - 1. The following MCLs and MCLGs for radionuclides apply to CWSs.

Table 200.10 MAXIMUM CONTAMINANT LEVELS and MAXIMUM CONTAMINANT LEVEL GOALS FOR RADIONUCLIDES

#	Contaminant	MCL	MCLG
1	Gross alpha particle activity	15 pCi/L (including radium-226 but excluding radon and uranium)	Zero
2	Combined radium-226 and radium-228	5 pCi/L (see note 1 below)	Zero
3	Beta particle and photon radioactivity	4 millirem/year (see notes 2 and 3 below)	Zero
4	Uranium	30 micrograms per liter (µg/L)	Zero

Notes:

^{1.} The combined radium-226 and radium-228 value is determined by adding the results of the analysis for radium-226 and the analysis for radium-228.

^{2.} The average annual concentration of beta particle and photon radioactivity from man-made radionuclides in drinking water must not produce an annual dose equivalent to the total body or any internal organ greater than 4 millirem/year (mrem/year).

^{3.} Except for the radionuclides listed in Table 200.11, the concentration of man-made radionuclides causing 4 mrem total body or organ dose equivalents must be calculated on the basis of 2 liters per day drinking water intake using the 168 hour data list in "Maximum Permissible Body Burdens and Maximum Permissible Concentrations of Radionuclides in Air and in Water for Occupational Exposure," NBS (National Bureau of Standards) Handbook 69 as amended August 1963, U.S. Department of Commerce¹. If two or more radionuclides are present, the sum of their annual dose equivalent to the total body or to any organ shall not exceed 4 mrem/year.

¹ This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of this document are available from the National Technical Information Service, NTIS ADA 280 282, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. The toll-free number is 800-553-6847. Copies may be inspected at EPA's Drinking Water Docket, 401 M Street, SW., Washington, DC 20460; or at the Office of the Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC.

TABLE 200.11 AVERAGE ANNUAL CONCENTRATIONS ASSUMED TO PRODUCE A TOTAL BODY OR ORGAN DOSE OF 4 mrem/yr

#	Radionuclide	Critical organ	pCi per liter
1	Tritium	Total body	20,000
2	Strontium-90	Bone marrow	8

- B. Compliance dates for combined radium-226 and radium-228, gross alpha particle activity, gross beta particle, photon radioactivity, and uranium:
 - 1. CWSs must comply with the MCLs listed in Table 200.10 beginning December 8, 2003 and compliance shall be determined in accordance with the requirements of § 411. Compliance with the reporting requirements for radionuclides is listed in Part XII (Consumer Confidence Report) Appendix F and Part VII (Public Notification) Appendices B and is required beginning December 8, 2003.
- C. BATs for radionuclides
 - 1. The Administrator pursuant to § 1412 of the SDWA has identified as indicated in the following table, the best available technology to achieve compliance with the MCLs for combined radium-226 and radium-228, uranium, gross alpha particle activity, beta particle and photon radioactivity.

TABLE 200.12 BATS FOR COMBINED RADIUM-226 AND RADIUM-228, URANIUM, GROSS ALPHA PARTICLE ACTIVITY, BETA PARTICLE AND PHOTON RADIOACTIVITY

#	Contaminant	BATS	
1	Combined radium-226 and radium-228	Ion exchange, reverse osmosis, lime softening	
2	Uranium	Ion exchange, reverse osmosis, lime softening coagulation/filtration	
3	Gross alpha particle activity (excluding radon and uranium)	n Reverse osmosis	
4	Beta particle and photon radioactivity	Ion exchange, reverse osmosis	

D. Compliance technologies for radionuclides for small water systems

TABLE 200.13 COMPLIANCE TECHNOLOGIES FOR RADIONUCLIDES FOR SMALL WATER SYSTEMS AND LIMITATIONS OF USE

#	Unit Technologies	Limitations (see footnotes)	Operator skill level ¹	Raw water quality range and considerations ¹
1.	Ion exchange (IE)	a	Intermediate	All ground waters
2.	Point of use (POU^2)	b	Basic	All ground waters
3.	Reverse osmosis (RO)	с	Advanced	Surface waters usually require pre-filtration
4.	POU ² RO	b	Basic	Surface waters usually require pre-filtration
5.	Lime softening	d	Advanced	All waters

6.	Green sand filtration	e	Basic	
7.	Co-precipitation with barium sulfate	f	Intermediate to Advanced	Ground waters with suitable water quality
8.	Electrodialysis/ electrodialysis reversal		Basic to Intermediate	All ground waters
9.	Pre-formed hydrous manganese oxide filtration	g	Intermediate	All ground waters
10.	Activated alumina	a, h	Advanced	All ground waters; competing anion concentrations may affect regeneration frequency
11.	Enhanced coagulation/ filtration	i	Advanced	Can treat a wide range of water qualities

¹ National Research Council (NRC). Safe Water from Every Tap: Improving Water Service to Small Communities. National Academy Press. Washington, D.C. 1997. Basic means Level 1, Intermediate means Level 2 or 3 and Advanced means Level 4 as defined in §1400.

² A POU, or "point-of-use" technology is a treatment device installed at a single tap used for the purpose of reducing contaminants in drinking water at that one tap. POU devices are typically installed at the kitchen tap. See the April 21, 2000 NODA for more details.

Limitations Footnotes: Technologies for Radionuclides:

- a The regeneration solution contains high concentrations of the contaminant ions. Disposal options should be carefully considered before choosing this technology.
- b When POU devices are used for compliance, programs for long-term operation, maintenance, and monitoring must be provided by water utility to ensure proper performance.
- c Reject water disposal options should be carefully considered before choosing this technology. See other RO limitations described in the SWTR Compliance Technologies Table.
- d The combination of variable source water quality and the complexity of the water chemistry involved may make this technology too complex for small surface water systems.
- e Removal efficiencies can vary depending on water quality.
- f This technology may be very limited in application to small systems. Since the process requires static mixing, detention basins, and filtration, it is most applicable to systems with sufficiently high sulfate levels that already have a suitable filtration treatment train in place.
- g This technology is most applicable to small systems that already have filtration in place.
- h Handling of chemicals required during regeneration and pH adjustment may be too difficult for small systems without an adequately trained operator.
- i Assumes modification to a coagulation/filtration process already in place.

Table 200.14 COMPLIANCE TECHNOLOGIES BY SYSTEM SIZE CATEGORY FOR RADIONUCLIDES

#	Contaminant	Compliance Technologies ¹ for systems size categories (population served)			
		25-500	501-3,300	3,300-10,000	
1	Combined radium-226 and radium-228	1, 2, 3, 4, 5, 6, 7, 8, 9	1, 2, 3, 4, 5, 6, 7, 8, 9	1, 2, 3, 4, 5, 6, 7, 8, 9	
2	Gross alpha particle activity	3, 4	3, 4	3, 4	
3	Beta particle activity and photon activity	1, 2, 3, 4	1, 2, 3, 4	1, 2, 3, 4	
4	Uranium	1, 2, 4, 10, 11	1, 2, 3, 4, 5,10,11	1, 2, 3, 4, 5, 10, 11	

NOTE: ¹Numbers correspond to those technologies found listed in the Table 200.13 of this section.

§ 210 Reserved