GEOTECHNICAL INVESTIGATION AND FOUNDATION RECOMMENDATION

for

PROJECT NO. N6330(1)1,2&4 and N6331(1)2&4

KAIBITO CREEK BOX CULVERT AND KAIBITO ROADWAY

NAVAJO NATION

COCONINO COUNTY, ARIZONA

CONTRACT NO. MOO2400517

Prepared for

ASCG, Inc 6501 Americas Parkway Suite 400 Albuquerque New Mexico 87110

And the

BUREAU OF INDIAN AFFAIRS, NAVAJO REGIONAL OFFICE

DIVISION OF TRANSPORTATION

GALLUP, NEW MEXICO

July 12, 2007 Revised August 21, 2007

Prepared By

TERRACON
Terracon Project No 66045049D

4905 Hawkins NE Albuquerque New Mexico 87109 Phone: 505-797-4287

Fax: 505-797-4288

August 21, 2007

4905 Hawkins NE Albuquerque, New Mexico 87109 Phone 505.797.4287 Fax 505.797.4288 www.terracon.com

> KEVIN J. SCOTT

Mike Zwolinski P.E. ASCG, Inc. 6501 Americas Parkway Suite 400 Albuquerque, New Mexico 87110

Re:

Geotechnical Investigation and Foundation Recommendation

N6330(1)1,2&4 and N6331(1)2&4

Navajo Nation

Coconino County, Arizona

Terracon Project No. 66045049D

Dear Mr. Zwolinski:

Terracon has completed the geotechnical engineering exploration for the proposed project to be located within the Navajo Nation Reservation, at Kaibito, in Coconino County, Arizona. This study was performed in general accordance with Terracon proposal P04-170A in reference to the project.

This report presents the results of our engineering analyses and discussions with ASCG regarding foundation alternatives and provides recommendations needed to aid in the construction of the foundations and other earth connected phases of the project.

We appreciate being of service to you in the geotechnical engineering phase of this project, and are prepared to assist you during the construction phases as well. If you have any questions concerning this report or any of our testing, inspection, design and consulting services, please do not hesitate to contact us.

Sincerely, TERRACON

Mchaller Mann for

Meagan J. Duneman, E.I.

Project Engineer

Copies to:

Addressee (3)

Kevin J. Scott, P.E.

Geotechnical Department Manager

Geotechnical Investigation and Foundation Recommendations Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4 Project No. 66045049D July 12, 2007 Revised August 21, 2007

TABLE OF CONTENTS

Letter of Transmittal	Page No.
Letter Of Transmittal	
INTRODUCTION	1
PROPOSED CONSTRUCTION	1
	_
SITE EXPLORATION	
Field Exploration	
Laboratory Testing	3
CITE CONDITIONS	_
SITE CONDITIONS	
Soil and Rock Conditions	
Field and Laboratory Test Results	
Groundwater Conditions	4
ENGINEERING ANALYSES AND RECOMMENDATIONS	5
Geotechnical Considerations	
Shallow Foundations	
Lateral Earth Pressures	
Scour	
Below Grade Wall Drainage	
Pavement Subgrade Preparation	
Pavement Section Designs	
Pavement Maintenance	
Corrosion Protection	
Earthwork	
General Considerations	
Slopes	
Excavation and Trench Construction	11
EVOCABILITATION CONSTRUCTION	
GENERAL COMMENTS	11

GEOTECHNICAL INVESTIGATION AND FOUNDATION RECOMMENDATION

PROJECT NO. N6330(1) 1, 2 & 4 AND N6331(1) 2 & 4

KAIBITO CREEK BOX CULVERT

TERRACON PROJECT NO. 66045049D JULY 12, 2007 REVISED AUGUST 21, 2007

INTRODUCTION

This Geotechnical Investigation and Foundation Recommendation (GIFR) report contains the results of our geotechnical engineering exploration for the proposed concrete box culvert structure and roadway to be located at Kaibito, in Coconino County, Arizona. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil conditions,
- groundwater conditions,
- foundation design and construction,
- lateral earth pressures,
- pavement design and construction,
- earthwork, and
- drainage.

The recommendations contained in this report are based upon the results of field and laboratory testing, engineering analyses, discussions with ASCG, and experience with similar soil conditions, structures and our understanding of the proposed project.

PROPOSED CONSTRUCTION

We understand that the new Kaibito Creek Box Culvert and Kaibito Roadway will cross Kaibito Creek on the Navajo Nation Reservation in Coconino County, Arizona. The approximate location of the bridge is shown on the Site Location Map, Figure A1 in Appendix A. The new bridge is anticipated to be a concrete box culvert structure with an earth embankment cover overlain by aggregate base course and an asphalt concrete surface. A maximum service load of 82 kPa is anticipated for the structure. In addition, we also understand that approximately 4260 meters of existing roadway will be improved along N6330 and N6331. Roadway improvements are anticipated to consist of grade and drain earthwork, installation of minor drainage structures, placement of aggregate base course and an asphalt concrete pavement surface, and other miscellaneous construction.

Information provided by the client indicates that the Average Daily Traffic (ADT) projected for the year 2025 will be 32 vehicles per day (vpd) for N6330 and 536 vpd for N6331.

SITE EXPLORATION

The scope of the services performed for this project included site reconnaissance by Terracon's field engineer, a subsurface exploration program, laboratory testing, and engineering analyses.

Field Exploration: A total of 20 test borings (designated B-1 through B-20) were drilled on May 8 and 9, 2007. The borings were drilled to approximate depths of about 2.6 to 11.1 meters below existing site grades, as indicated in the table below. The borings were located in the field from the alignment provided by representatives of ASCG. In some situations, the borings were moved due to accessibility for the drilling rig. The approximate stationing and surface elevation at each boring location was provided by ASCG. The approximate boring locations, as referenced to a station and offset from the centerline and the elevation, are shown in the following table.

Boring Designation	Approximate Boring Station (meters)	Approximate Offset	Approximate Elevation (meters)	Approximate Drilled Depth (meters)
B-01	1+050	0	1744	2.6
B-02	1+110	8 Meters Right	1740	11.1
B-03	1+110	0	1740	11.1
B-04	1+110	9 Meters Left	1740	11.1
B-05	1+360	0	1755	2.6
B-06	1+630	, 0	1772	2.6
B-07	33+900	10 Meters Left	1832	2.6
B-08	34+200	5 Meters Left	1830	2.6
B-09	34+500	0	1826	2.6
B-10	34+800	0	1821	2.6
B-11	35+100	. 0	1811	2.6
B-12	35+400	0	1795	2.6
B-13	35+700	0	1779	2.6
B-14	36+000	0	1759	2.6
B-15	36+320	0	1752	2.6
B-16	36+600	0	1747	2.6
B-17	36+900	5 Meters Right	1750	2.6
B-18	37+200	10 Meters Right	1744	2.6
B-19	37+380	0	1744	2.6
B-20	37+560	10 Meters Right	1739	2.6

The borings were performed at the approximate locations shown on the Boring Location Diagram, Figure A2. Penetration resistance measurements were obtained by driving the sampler into the subsurface materials with a 63.5-kilogram (kg) (140 pound) hammer falling 76.2 cm (30 inches). The number of blows required to drive the sampler the last 30 cm (12 inches) of the total 45 cm (18 inches) is referred to as the SPT blow count or "N-value". The penetration resistance value is a useful index in estimating the consistency, relative density or hardness of the materials encountered.

Logs of each boring were recorded by the Terracon field engineer during the drilling operations. At selected intervals, samples of the subsurface materials were taken by driving either split-barrel or ring-barrel samplers.

Groundwater conditions were evaluated in each boring at the time of site exploration, and upon completion of drilling. The groundwater elevations reflect the conditions at the time of the exploration. These may vary with time and season of the year.

Laboratory Testing: Samples retrieved during the field exploration were returned to the laboratory for observation by the project geotechnical engineer and were classified in general accordance with the Unified Soil Classification System described in Appendix C. At that time, an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials and the field descriptions were confirmed or modified as necessary. Logs of Borings were prepared and are presented in Appendix A.

Laboratory tests were conducted on selected soil samples and are presented on the Logs of Borings and in Appendix B. The test results were used for the geotechnical engineering analyses, and the development of foundation and earthwork recommendations. Laboratory tests were performed in general accordance with the applicable local or other accepted procedures.

Selected soil samples were tested for the following engineering properties:

Water Content

- Grain Size
- Hveem R-Value

Plasticity Index

SITE CONDITIONS

The project site is located in Kaibito, Arizona, on Navajo Routes N6330 and N6331. N6330 is a dirt road that intersects N6331 and goes east across Kaibito Creek and up a steep hill to a residential area. N6331 is a dirt road that goes north from the intersection with Navajo

Route N21 through a residential area and intersects with AZ 98. The elevation generally decreases from south to north.

Soil and Rock Conditions: As presented on the Logs of Borings, the subsurface soil conditions encountered in the roadway soil borings generally consisted of poorly graded sands with varying amounts of silt (SP-SM, SM) to the boring termination depth. A layer of clayey sand (SC) was encountered in borings B-01 and B-20 below the sandy layer and a layer of lean clay (CL) was encountered in B-10 above the sand layer. The subsurface conditions at the box culvert generally consisted of a poorly graded sand with silt and gravel (SP-SM) layer with a thickness of approximately 1.2 meters (4 feet) underlain by poorly graded sands with varying amounts of silt (SP-SM, SM) to the boring termination depth. A majority of the sand materials appeared to be weathered sandstone and the clayey sand material in B-01 appeared to be shale. Hollow-stem auger drilling was able to penetrate the weathered sandstone bedrock and well-cemented soils. In general, the bedrock appeared to be weathered sandstone,

Field and Laboratory Test Results: Field penetration test results, as correlated to the Standard Penetration Test (N-value), indicate the coarse grained soils are generally loose to very dense in relative density while the fine grained soils are generally very stiff in consistency. The very dense, coarse grained, materials probably represent weathered sandstone.

Groundwater Conditions: Groundwater was not observed in the roadway borings at the time of drilling and was observed in borings B-02, B-03, and B-04 at depths of 5.2 meters, 4.6 meters, and 4.6 meters, respectively. These observations represent groundwater conditions at the time of the field exploration, and may not be indicative of other times, or at other locations. Groundwater conditions can change with varying seasonal and weather conditions, and other factors.

Zones of perched and/or trapped groundwater may also occur at times in the subsurface soils. The location and amount of perched water is dependent upon several factors, including hydrologic conditions, type of site development, irrigation demands on or adjacent to the site, fluctuations in water features, seasonal and weather conditions.

Fluctuations in groundwater levels can best be determined by implementation of a groundwater monitoring plan. Such a plan would include installation of groundwater monitoring wells, and periodic measurement of groundwater levels over a sufficient period of time. The possibility of groundwater fluctuations should be considered when developing design and construction plans for the project.

ENGINEERING ANALYSES AND RECOMMENDATIONS

The analyses and recommendations presented in this report have been prepared in general accordance with the guidelines established in Division 1 of the *Standard Specifications for Highway Bridges, 2002, 17th Edition* as prepared by the American Association of State Highway and Transportation Officials (AASHTO). Recommendations pertaining to the construction and installation of the various foundation elements, abutments, and approach slabs should be in accordance with Division 2 of the Standard Specifications.

Geotechnical Considerations: The subsurface conditions at the box culvert location generally consisted of a loose poorly graded sand with silt and gravel layer with a thickness of a 1.2 to 2.0 meters (4 to 6 ½ feet) underlain by very dense poorly graded sand with varying amounts of silt (weathered sandstone).

It should be noted that the project site is identified as having a low to moderately low seismic risk in accordance with AASHTO guidelines.

Design and construction recommendations for the recommended foundation system were evaluated and other earth related phases of the project are outlined below.

Shallow Foundations: We recommend the proposed box culvert structure be supported on 61 centimeters (24 inches) of engineered fill. We further recommend that the cutoff walls either extend to the very dense native soils or extend a minimum of 0.5 meters below scour depth if adequate protection is provided at the upstream and downstream faces of the box culvert to prevent erosion and/or scour at the cutoff walls. A maximum bearing pressure of 143 kPa (3,000 psf) may be used. The design bearing pressure applies to dead load plus design live load conditions. The design bearing pressure may be increased by one-third when considering total loads that include wind or seismic conditions.

Maximum total settlement resulting from the assumed structural loads is estimated to be on the order of 19 millimeters (¾ inch). Differential settlement should be on the order of ½ to ¾ of the estimated total settlement.

Foundation excavations should be observed by the geotechnical engineer. If the soil conditions encountered differ significantly from those presented in this report, supplemental recommendations will be required.

Lateral Earth Pressures: For soils above a free water surface, recommended equivalent fluid pressures for unrestrained foundation elements (i.e. abutments and wing walls) are:

Geotechnical Investigation and Foundation Recommendations Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4 Project No. 66045049D July 12, 2007 Revised August 21, 2007

Compacted granular backfill5.5	kPa/m
--------------------------------	-------

- Passive:
 Provided the channel is armored per Federal Highway Guidelines to minimize scour at the entry and exit of the box culvert, a passive resistance for on-site soils of 64 kPa/m can be utilized for abutment and wing walls.

The active lateral earth pressures herein do not include any factor of safety and are not applicable for submerged soils/long-term hydrostatic loading. Additional recommendations may be necessary if submerged conditions are to be included in the design. Short-term hydrostatic loading as typically associated with flooding and/or short-term saturation due to storm water run-off/snow melt does not require additional recommendations.

Fill against cutoff walls and wing walls should be compacted to densities specified in the Earthwork section of this report. Medium to high plasticity clay soils or shale should not be used as backfill against wing walls. Compaction of each lift adjacent to walls should be accomplished with hand-operated tampers or other lightweight compactors. Overcompaction and use of medium to high plasticity clay soils or silt/claystone/shale may cause excessive lateral earth pressures which could result in wall movement.

Scour: As requested, we have provided the gradation results of the soil materials encountered in the existing wash that we expect to be representative of the potential scour material. The materials were obtained by excavating a small pit with a shovel to a depth of about 0.6 meters (2 feet) below existing grades on the boundary and within the limits of the existing wash. The scour gradation results, labeled Scour, may be found in Appendix B on the grain size distribution curves.

Below Grade Wall Drainage: To reduce hydrostatic loading on below grade walls, such as wing walls, a permeable backfill should be placed behind the wall in accordance with Section 210, Permeable Backfill, of FP-96. The free-draining granular material should be graded to prevent the intrusion of fines or encapsulated in a suitable filter fabric. A drainage system consisting of either weep holes or perforated drain lines (placed near the base of the wall) should be used to intercept and discharge water that may saturate the backfill. Where used, drain lines should be provided with adequate clean-outs for periodic maintenance. An impervious soil should be used in the upper layer of backfill to reduce the potential for water infiltration. As an alternative, a prefabricated drainage structure, such as geocomposite,

Geotechnical Investigation and Foundation Recommendations Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4 Project No. 66045049D July 12, 2007 Revised August 21, 2007

may be used as a substitute for the granular backfill adjacent to the wall. Materials used for drainage should conform to Sections 714.01, *Geotextile*, 714.02, *Geocomposite Drains*, and 703.04, *Permeable Backfill*, of FP-96.

Pavement Subgrade Preparation: As construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, or rainfall. As a result, the pavement subgrade may not be suitable for pavement construction and corrective action will be required. The subgrade should be carefully evaluated at the time of pavement construction for signs of disturbance or excessive rutting. If disturbance has occurred, pavement subgrade areas should be reworked, moisture conditioned, and properly compacted to the recommendations in this report immediately prior to paving.

Pavement Section Designs: Design of pavements for the project was based on the procedures outlined in the 1993 Guideline for Design of Pavement Structures by the American Association of State Highway and Transportation Officials (AASHTO). Information provided by the client indicates that the Average Daily Traffic (ADT) projected for the year 2025 will be 536 vpd for N6331 and 32 vpd for N6330. The projection assumes that buses will account for five percent of the traffic for N6331 and none of the traffic for N6330. These values generally correspond to those recommended by the Asphalt Institute IS-181 (MS-1) for Traffic Categories Class I and Class III. Class I describes typical traffic on light farm roads, whereas Class III describes traffic associated with urban and rural minor collectors. The classes address ADTs of between 50 to 100 vpd and 200 to 700 vpd, respectively. Because 32 vpd is considered too light for AASHTO methods, we used 50 vpd for calculations for N6330. Based on these data, previous experience with similar type roads and anticipated usage, the pavement sections have been designed for a 20 year life using an equivalent single 80 kN axle load (ESAL) of about 5,000 for N6330 and 138,000 for N6331.

Local drainage characteristics of proposed pavements areas are considered to vary from fair to good. For purposes of this design analysis, fair drainage characteristics are considered to control the design.

Asphalt concrete should be obtained from an approved mix design stating the Marshall properties, optimum asphalt content, job mix formula, and recommended mixing and placing temperatures. Aggregate used in asphalt concrete should meet a particular gradation. Materials meeting Section 401, *Hot Asphalt Concrete*, FP-96 criteria for Class B Asphaltic Concrete as defined in Table 401-1 should be used. The mix design should be submitted prior to construction to verify its adequacy. The asphalt materials should be placed and compacted in accordance with Sections 702, *Asphalt Material*, 703 and 401 requirements.

Aggregate base course should consist of a blend of sand and gravel, which meets strict specifications for quality and gradation. Use of materials meeting Section 703, Aggregate,

of FP-96, is required. Aggregate base course material should be tested to determine compliance with these specifications prior to importation to the site. Aggregate base course should be placed and compacted in accordance with Section 301, *Untreated Aggregate Courses*, of FP-96.

Pavement design recommendations for this project have been based on procedures outlined in the *AASHTO Guide for Design of Pavement Structures*, 1993, coupled with our local experience and understanding of the project. Using an average laboratory-obtained R-value of 69, ESALs of 5,000 and 138,000, and appropriate asphalt and aggregate base course equivalency factors, we designed the pavement section shown in the table below. Our design calculations are provided in Appendix D.

PAVEMENT THICKNESS RECOMMENDATIONS

MATERIAL	N6330 THICKNESS* (millimeters)	N6331 THIGKNESS* (millimeters)
Aggregate Base	102	152
Asphalt Surface	51	64
Total Pavement Section	153	216

^{*}recommended minimum thicknesses

Although the design calculations resulted in a smaller pavement section, we recommend using a thicker section to account for construction tolerances.

The recommendations provided are based on an R-value of 69. This is an average of the R-values obtained along the road. Appropriate use of these recommendations requires that soils having an R-value of less than 69 must be removed and replaced with materials having an R-value of at least 69. We recommend a minimum removal and replacement thickness of about 0.6 meters. Replacement materials can be imported or obtained from grading of the road in areas where the R-value exceeds 69. Based on the results of the estimated R-values, it is likely that removal and replacement will occur at the following location due to clayey soils:

Beginning Station	Ending Station
Station 34+700	Station 34+900

Prior discussions with the BIA Navajo Regional office, and comments provided by them indicate that removal and replacement will be too costly and they do not agree with this recommendation. During our discussions, it was indicated that they have alternative

Geotechnical Investigation and Foundation Recommendations Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4 Project No. 66045049D July 12, 2007 Revised August 21, 2007

methods that they have used in the past, and as such, since the BIA Navajo Regional Office is the owner of the project, they may elect to alter our recommendations based on past experience. Since these alternative methods are unknown at this time, Terracon does not assume responsibility for the performance of the subgrade or roadway section of the areas modified by the BIA Navajo Regional Office that are not outlined in this report.

Pavement Maintenance: Service life of the pavement is based on periodic pavement maintenance, adequate drainage, and traffic consistent with the stated assumptions in this report. Preventive maintenance should be planned and provided for through an on-going pavement management program. Preventive maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment. Preventive maintenance consists of both localized maintenance (e.g. crack and joint sealing and patching) and global maintenance (e.g. surface sealing). Preventive maintenance is usually the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements. Prior to implementing any maintenance, additional engineering observation is recommended to determine the type and extent of preventive maintenance.

Long term pavement performance depends on several factors, including maintaining subgrade moisture levels and providing for preventive maintenance. The following recommendations should be considered the minimum:

- Site grading at a minimum 2% grade away from the pavements;
- Install joint sealant and seal cracks immediately.

The pavement section outlined above was determined based on the laboratory test results and post-construction traffic loading conditions for this type of road. This pavement section does not account for heavy construction traffic during the early stages of road construction. A partially constructed structural section may be subjected to heavy construction traffic that can result in pavement deterioration and premature failure. Our experience indicates that this pavement construction practice can result in pavements that will not perform as intended. Considering this information, several alternatives are available to mitigate the impact of heavy construction traffic on the pavement construction. These include using thicker sections to account for the construction traffic, using some method of soil stabilization to improve the support characteristics of the pavement subgrade, or by routing heavy construction traffic around paved streets. We are available to discuss these alternatives with you.

Corrosion Protection: Chemical laboratory testing was not performed for this project. Based on our knowledge of the site and our experience in similar foundation conditions, it is our opinion that chemical testing for sulfate, chloride, pH and resistivity is not required under

Geotechnical Investigation and Foundation Recommendations Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4 Project No. 66045049D

culverts will be significantly affected by chemical attack.

Terracon

July 12, 2007 Revised August 21, 2007

existing, present the extant conditions. It is unlikely that concrete or steel used in the foundation elements or

Earthwork:

General Considerations: The conclusions contained in this report for the proposed construction are contingent upon compliance with recommendations presented in this section.

- Site clearing shall be performed in accordance with Sections 201, Clearing and Grubbing, and 203, Removal of Structures and Obstructions, of FP-96.
- Roadway, embankment, and earthwork pertaining to foundation element preparation, excavation, filling and backfilling should be performed in accordance with Section 204, Excavation and Embankment, of FP-96. Materials used in the construction of the roadway subgrade should be in accordance with Section 704, Soil, of FP-96.
- Drainage structure and wing wall preparation, excavation, filling and backfilling should be performed in accordance with Section 208. Structure Excavation and Backfill for Selected Major Structures, of FP-96. Materials used in the backfilling around the drainage structures should be in accordance with Sections 703.04, Permeable Backfill, and 704 of FP-96.
- Recommendations for pavement elements supported on compacted fills or "Earthwork" prepared subgrade depend upon compliance with the recommendations.
- To assess compliance, observation and testing should be performed under the direction of the geotechnical engineer and in accordance with Section 106, Acceptance of Work, of FP-96. Testing for compliance should be in accordance with Table 204-1 of Section 204, Excavation and Embankment, of FP-96
- We recommend soil shrinkage factors of about 5 to 7 percent for the sand materials in the borings and 7 to 10 percent for the clayey soils encountered in Borings B-01 and B-10.

Slopes: For permanent slopes in native soils or in compacted fill a on-site material, the recommended maximum slope for on-site (Horizontal:Vertical). If steeper slopes are required for site devi analyses should be completed to design the grading plan.

The face of all fill slopes should be compacted to the minimum s embankments. Alternately, fill slopes can be over-built and trimmed to compacted material. If any slope in cut or fill will exceed 7.5 m in height, the grading design should include mid-height benches to intercept surface drainage and divert flow from

the face of the embankment. If the slope contains erosion protection, slopes of 10 m in height with no benching is acceptable.

Excavation and Trench Construction: Excavations into the on-site soils may encounter caving soils, depending upon the final depth of excavation. The individual contractor(s) should be made responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. All excavations should be sloped or shored in the interest of safety following local and federal regulations, including current OSHA excavation and trench safety standards.

The soils to be penetrated by excavations may vary across the site. The soil classifications presented in this report are based solely on the materials encountered in the test borings. The contractor should verify that similar conditions exist throughout the proposed area of excavation. If different subsurface conditions are encountered at the time of construction, the actual conditions should be evaluated to determine any excavation modifications necessary to maintain safe conditions.

As a safety measure, it is recommended that all vehicles and soil piles be kept to a minimum lateral distance from the crest of the slope equal to no less than the slope height. The exposed slope face should be protected against the elements.

GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide testing and observation during excavation, grading, foundation and construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings or across the site. The nature and extent of such variations may not become evident until construction. If variations appear, it will be necessary to reevaluate the recommendations of this report.

The scope of services for this project does not include either specifically or by implication any environmental assessment of the site or identification of contaminated or hazardous materials or conditions. If the owner is concerned about the potential for such contamination, other studies should be undertaken.

Terracon

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. In the event that changes in the nature, design, or location of the project as outlined in this report, are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes, and either verifies or modifies the conclusions of this report in writing.

					17
			e a		
]					
	4 -				

SOURCE: USGS Topographic Map, Kaibito, Arizona.- 7.5 Minute Quadrangle, 1981.

AREA MAP

Kaibito Creek N6330(1) 1, 2 & 4 and N6331(1) 2 & 4 Kaibito, Arizona

Project No. 66045049D Date: June 19, 2007

Scale: 1 in. = 1500 ft. (approx.)

FIGURE A1

ँ	LOG OF BORING NO. B-01 Page 1 of 1											
CL	ENT ASCC Inc											
SIT	ASCG, Inc.		PRO	JEC	T							
	Kaibeto, Arizona					CAL	MPLES		Kaib	eto	TECTO	
1	Boring Location: STA 1+050, centerline					JAI	VIPLE			_	TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1744 m		DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, KPa	
	SILTY SAND; brown, dense		_									
			-	SM	1	SS	0.15	49	2			
	1.4	1742.6	'-									
	CLAYEY SAND; red, very dense			sc	2	SS	0.46	50	7			
	2.1 SILTY SAND; reddish brown, very de	1741.9	2	SM	3	00	0.46	64	7			
	2.6	1741.4	-	SIVI	<u>ی</u>	33	U.46	04	7			
	Boring Terminated at 8.5 Feet.			ł	12.0			ĺ				
			:									
							İ					
				1								
							-					
		2										
		į										
											1	
W20/				ľ								
0 105												
ACON.												
EKK												
The between WA WL WL	stratification lines represent the approximate bound een soil and rock types: in-situ, the transition may	ary lines										
betw N/A	een soil and rock types: in-situ, the transition may	be gradual.		-		ı	30PII	NG ST	ΔΡΤΕ	D		05-08-07
WL	The state of the s							NG CC				05-08-07
WL	<u>Ā</u>	Jerra					RIG	_	OME-7		DREMAI	
WL	·					-		OVED				3045049D

BORIN	G STAF	0	5-08-07		
BORIN	08	5-08-07			
RIG	CN	IE-75	FORE	/AN	MD
ADDRO	//ED	KIS	IOB#	660/	EUADD

50					3	0					
: [LOG OF BOR	ING	NC	. E	3-02	2				F	age 1 of 2
С	LIENT ASCG, Inc.										
s	TE	PRO	JEC	Т	_				-		
_	Kaibeto, Arizona Boring Location: STA 1+110, R 8 meters		T	1	SA	MPLE		Kaib	eto	TESTS	
н	Boring Location: STA 1+110, R 8 meters			一	1	IVII CC	Ĭ				1
GRAPHIC LOG	DESCRIPTION Approx, Surface Elev.: 1740 m	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, KPa	
	POORLY GRADED SAND with silt and gravel; brown, very dense	-									
	1,21738.8	1—	SP SM	1	SS	0.41	68/.28	6			23
	SILTY SAND; white, very dense (Weathered Sandstone)	- - 2—	SM	2	ISS	0.03	50/.03	3			
		3—	SM	3	SS	0.03	50/.03	12			
	3.8 1736,2 SILTY SAND; white to light brown, very dense (Weathered Sandstone)	4	SM	4	SS	0.03	50/.08	11			
	₹	5— — — — 6—	SM	5	SS	0.05	50/.13	22			
		7—		<u>-</u> .							
07/12/07	8.4 1731.6	8—	SM	6	SS	0.08	50/.08	20			
OREHOLE 99 660450480 GPJ TERRACON GDT OTIVIZOR	SILTY SAND, red brown, very dense (Weathered Sandstone)	9—									
- F	Continued Next Page										
pe pe	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.										
W	ATER LEVEL OBSERVATIONS, m						NG ST				05-08-07
B WI		7	-				NG CC			7 Page 1 4 -	05-08-07
SE W						RIG Appr	ROVED	CME-7		DREMA	N MD 6045049D

									=	_		
1	_	LOG OF BOR	ING	NO	. B	3-02	2				Р	age 2 of 2
	CL	JENT										<u> </u>
	SIT	ASCG, Inc.	DBC	JEC	т							
	3,	Kaibeto, Arizona	PRO	JJ⊑U	1			N310	Kaibe	eto		
			 			SAI	MPLE:				TESTS	
	GRAPHIC LOG	DESCRIPTION	ОЕРТН, т.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, kPa	
		SILTY SAND; red brown, very dense (Weathered Sandstone)	_	SM	7			50/.05	15			
		4	-	-		H						
		9.9 1730.1 SILTY SAND; white to light brown, very dense	10—]	3							
		dense (Weathered Sandstone)			-				ĺ			
		(11000)	_	SM	8	SS	ი ი <u>გ</u>	50/.08	24			
		11.1 1728.9	11—				0.00	307.00				
		Boring Terminated at 36.5 Feet.										
										ľ		
	1											
]							
1												
									[- 1		
ı										- 1		
											11	
707												
07/12												
GDT												
CON												
ERRA												
72												
BOREHOLE 99 66045049D,GPJ TERRACON.GDT 07/12/07	The	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.										
80450		TER LEVEL OBSERVATIONS, m				E	BORII	NG ST	ARTE	5		05-08-07
89 66				_				NG CO				05-08-07
JOLE 1		¥ 5.2 WD ¥ Terra				F	RIG		ME-7		REMAN	
OREI	WL					7		OVED		_		045049D

BORING	STAI	RTED		05	-08-07
BORING	CON	IPLETE	ED .	05	-08-07
RIG	CI	/IE-75	FORE	/AN	MD
APPRO\	/ED	KJS	JOB#	6604	5049D

\bigcap	LOG OF BOR	ING	NO	. E	3-03	3				Р	LOG OF BORING NO. B-03 Page 1 of 2								
CL	IENT ASCG, Inc.																		
SI	E	PROJECT N310 Kaibeto																	
\vdash	Kaibeto, Arizona Boring Location: STA 1+110, centerline				SAI	MPLES		Naib	eto	TESTS									
	Bonng Location. STA 14110, centernine				1				1										
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1740 m	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, kPa									
311	POORLY GRADED SAND with silt and		-		 -	<u> </u>	- U III	30											
	gravel; brown, medium dense to very																		
	dense	_	SP	1	SS	0.46	12	7											
	×ii	1—	SM							¥									
		_																	
	*	_	SP	2	ŚŚ	0.08	50/.1	5											
	2 1738	2—	SM																
	SILTY SAND; white, very dense (Weathered Sandstone)	<u> </u>																	
	,	_																	
		_ 3—																	
		_	SM	3	SS	0.05	50/.05	10											
		_			_	—													
		_																	
		4—																	
	✓	_																	
	-a-	_	SM	4	SS	0.05	50/.05	21											
		5—																	
9 3 5 3 4 5	5.3 1734.7 SILTY SAND; light brown, very dense	_																	
	(Weathered Sandstone)																		
		6																	
	5	_	SM	5	SS	0.08	50/.08	21		:									
		_		_															
		7																	
		_																	
	i	_	CNA	_	00	0.05	-010r	-04											
		8	SM	6	33	U.U5	50/.05	21											
	8.4 1731.6	Ŭ -	\Box		П														
	SILTY SAND; white, very dense (Weathered Sandstone)																		
	(Weathered Sandstone)																		
ASS	Continued Next Page	9—		—															
The	stratification lines represent the approximate boundary lines																		
betv	even soil and rock types: in-situ, the transition may be gradual.										<u>=</u> ,								
	TER LEVEL OBSERVATIONS, m					BORI	NG ST	ARTE	D		05-08-07								
_	¥ 4.6 WD ¥ ¥ PEFF		-			BORI	NG CC	MPLE	ETED		05-08-07								
WL	ā lī		.C			RIG	(CME-	75 F0	DREMA	N MD								
WL				_		APPF	ROVED	K.	JS JC	DB# 6	6045049D								

		LOG OF BOR	ING	NO	. В	-03					F	age 2 of 2
	CLI	ENT ASCG, Inc.										
	SIT	E	PRO	JEC	Т			N1040	Vaih	-4-		
ŀ		Kaibeto, Arizona				SAI	MPLE:		Kaib	eto	TESTS	
	GRAPHIC LOG	DESCRIPTION	ОЕРТН, т.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT	UNCONFINED STRENGTH, kPa	
		<u>SILTY SAND</u> ; white, very dense (Weathered Sandstone)	_	SM	7		0.03	50/.03	20			
		9.9 1730.1										
		SILTY SAND; red brown, very dense (Weathered Sandstone)	10— — —							=		20
				SM	8	SS	0.03	50/.03	12			
ŀ		Boring Terminated at 36.5 Feet.	11—	\vdash								
1												
ı												
۱												
١												
1												
12/07												
170 TO												
CONG				2							i	23
TERR												
BOREHOLE 99 66045049D.GPJ TERRACON.GDT 07/12/07	The:	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.										
604504		TER LEVEL OBSERVATIONS, m					30RI	NG ST	ARTE	D		05-08-07
9 e	WL		7				30RI	NG CC				05-08-07
ZEHOL!	WL	¥ 4.6 WD ¥ ¥ Property August 1					RIG		CME-	_	OREMA	
۵	WL					- 1/	APPF	ROVED) K.	JS J(DB# 6	6045049D)

	LOG OF BOR	ING	NO	B	R_∩/	400					
CL	IENT EGG OF BOX		110	. L	-0-	<u> </u>			<u>_</u>	F	age 1 of 2
	ASCG, Inc.										
SIT	Kaibeto, Arizona	PRO	JEC	Т			N310	Kaib	eto		
	Boring Location: STA 1+110, L 9 meters		Π		SA	MPLE			1	TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Flow: 1740 m	DEPTH, m.	JSCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kn/m³	UNCONFINED STRENGTH, KPa	
	Approx. Surface Elev.: 1740 m POORLY GRADED SAND with silt and		_		-	14.	σш	>0	ㅁㅗ	36	
	gravel; brown, medium dense to very dense	- - 1	SP SM	1	SS	0.41	15	5			
	* 0										
		_	SP	2	SS	0.03	50/.03	5			
	2 1738 SILTY SAND; white, very dense	2—	SM		 			_			
	(Weathered Sandstone)	_									
		3—									
		_	SM	3	SS	0.08	50/.08	7			
		_	П								
		4-								!	
	₽	_	SM	4	00	٥٥۶	50/.05	16			
		5—	SIVI	-4	33	0.05	507.05	10			
经通过 经通过	5.3 1734.7 SILTY SAND; white to red, very dense	_									
	(Weathered Snadstone)	_									
		6 	SP	5	SS	0.1	50/.1	22			
		_	SM								
	6.9 1733.1 POORLY GRADED SAND with silt; light	7—									
	brown, very dense (Weathered Sandstone)	_									
			SM	6	SS	0.05	50/.08	24			
		8—									
		_									
		9—									
7	Continued Next Page										
betv	stratification lines represent the approximate boundary lines veen soil and rock types: in-situ, the transition may be gradual.				_						
WL	TER LEVEL OBSERVATIONS, m						NG ST				05-08-07
WL	¥ 4.6 WD ¥ ¥ ¥			1	1	BORI RIG	NG CC			OREMA	05-08-07 N MD
WL							ROVED				6045049D

-	\bigcap	LOG OF BOI	RING	N	0.	B-	04						Page 2 of 2
	CL	JENT ASSO Inc.	1					<u> </u>					age z oi z
	SIT		PR	OJE	CT	•							-
	H	Kaibeto, Arizona	-	$\overline{}$	$\overline{}$:	SAMF		N310	Kaib	eto	TESTS	
	GRAPHIC LOG	DESCRIPTION	DEPTH, m.	Canva again	USCS STMBOL	ER		T	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	, a	
		POORLY GRADED SAND with silt; light brown, very dense		SI	М	7 8	SS 0.	.08 5	50/.08	14			
		(Weathered Sandstone)	10-	-				-00					
		±		 - SI	М	8 8	SS 0.	.08 5	0/.08	11			-
		111.1 1728. Boring Terminated at 36.5 Feet.	9 11-	╄	+	\dashv	\dashv	-					-
									į				
		*4 27											
													=
1												l I	
ı									İ				
2/0/2		17											
DT 07/13													
NCON GI													
TERR													
BOREHOLE 99 66045049D,GPJ TERRACON.GDT 07/12/07	The betw	stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.	*										
660450	WA	ATER LEVEL OBSERVATIONS, m					ВС	DRIN	IG ST	ARTE	D		05-08-07
E 99		¥ 4.6 WD ¥					1 1		IG CO		_		05-08-07
REHOL	WL WL	¥ 4.6 WD ¥ Y		4	Ш		RIC			ME-7		OREMA	
읾	AAL						AP	TKC	OVED	K	S J(78 # 6	6045049D

BORING S	TARTED		05-0	8-07
BORING C	OMPLETE	ED	05-0	8-07
RIG	CME-75	FORE	/AN	MD
APPROVE	D KJS	JOB#	660450)49D

	LOG OF BOR	ING	NO	. B	-05					-	lama di ce d
CLI	ENT									<u> </u>	age 1 of 1
SIT	ASCG, Inc.	PRO	UEC	т							
	Kaibeto, Arizona	FINE	JLC					Kaib	eto		
	Boring Location: STA 1+360, centerline				SAI	MPLE:	S 			TESTS]
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1755 m	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, KPa	
	SILTY SAND; white, very dense	- -	-	_	Ė	_					
	(Weathered Sandstone)	- - 1—	SM	1	SS	0.25	50/.1	6			
	2 1753		SM	2	SS	0.08	50/.08	3			
	SANDY LEAN CLAY; red, hard (Shale)	-	CL	3	SS	0.41	55	16			
	2.6 1752.4 Boring Terminated at 8.5 Feet.	- 	_								
The betw WA WL WL	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.										
betw	een soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, m				1	BORI	NG ST	ARTF	D		05-08-07
WL				_			NG CC				05-08-07
WL	T WE WD T	30				RIG			_	DREMA	N MD
WL						APPF	ROVED) K.	JS JC	DB# 6	6045049D

CH.		LOG OF BO	RING	N	D . I	B-06	3	· · · · ·		***		
	CL	ENT	T								F	age 1 of 1
	SIT	ASCG, Inc.	DD.	O IE	ОТ							
	311	Kaibeto, Arizona	"	OJE	C1			N310	Kaib	eto		
		Boring Location: STA 1+630, centerline				SA	MPLE	S		ī	TESTS	1
	GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1772 m	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kn/m³	UNCONFINED STRENGTH, KPa	V
2		SILTY SAND; brown, medium dense to very dense		十	Ť							
			1-	SM	/ 1	SS	0.46	20	2			e 5
		1.5 Weathered Sandstone	5	SN	/ 2	SS	0.46	62	5			2
			2-	SN	/I 3	SS	0.36	50/.15	5			
		2.6 1769 Boring Terminated at 8.5 Feet.	4			00	0.00	007.10				
BOREHOLE 99 66045049D.GPJ TERRACON.GDT 07/12/07	The	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.										
3045049[reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, m					BORI	NG ST	ARTF	D		05-08-07
99 66								NG CC				05-08-07
REHOLE	WL.	¥ ¥ Terr					RIG		CME-		DREMA	
ğ	WL					4	APPF	ROVED	K.	IS JO	DB# 6	6045049D

BORING	STA	RTED		05-0	08-07
BORING	COM	IPLETE	ED	05-0	08-07
RIG	CN	∕IE-75	FORE	//AN :	MD
APPRO\	/ED	KJS	JOB#	66045	049D

							1					
		LOG OF BOR	ING	NO). B	3-07	7				F	Page 1 of 1
	CL	IENT ASCG, Inc.										
	SIT	Έ	PRC	JEC	Т							
		Kaibeto, Arizona	ļ	_		CAI	MPLE		Kaib	eto	TESTS	
		Boring Location: STA 33+900, L 10 meters				JAI	VIPLE	<u> </u>		[[
	100	DESCRIPTION		ABOL			:, ⊞.	.3m.	8	₩	UNCONFINED STRENGTH, KPa	
	GRAPHIC LOG	# **	ОЕРТН, т.	USCS SYMBOL	NUMBER	Į W	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT KN/m³	CONFI	
	GR/	Approx. Surface Elev.: 1832 m		nsc	Ž	TYPE	Ä	SP1 BLC	\$0.	E S	STR	
		SILTY SAND; red brown	_	-			7/					
		0.6 1831.4	_									2
		POORLY GRADED SAND with silt; white, very dense	1	SP SM	1	SS	0.1	50/.13	4			
		1.2 (Weathered Sandstone) 1830.8 SILTY SAND; red brown, very dense	_									
ı		(Weathered Sandstone)	<u> </u>	SM	2	SS	0.08	50/.1	8			
		SILTY SAND; red, very dense	2—	SM	3	00	0.05	50/.08	8			
١		(Weathered Sandstone) 2.6 1829.4	_	SIVI	<u> </u>	33	0.05	507.06				
		Boring Terminated at 8.5 Feet.										
					i							
								!				
									23			
	i								l			
	27											
2/07												
1//0								ĺ	ŀ			
N.GD												
ACO												*1
TERR												
BOREHOLE 99 88045049D GPJ TERRACON GDT 07/12/07	The	stratification lines represent the approximate boundary lines	N						<u> </u>			
3045049		reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, m				Ti	BORI	NG ST	ARTE	D		05-08-07
99 66								NG CC				05-08-07
OLE	WL	A NE MD A					RIG				DREMA	
OREH	WL					- -		ROVED				3045049D

	LOG OF BOR	ING	NO	. B	30-8				•		age 1 of 1
CL	IENT										age i oi i
SI		PRC	JEC	Т				- 1			
\vdash	Kaibeto, Arizona Boring Location: STA 34+200, L 5 meters				SAI	MPLE		Kaibe	eto	TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1830 m	ОЕРТН, т.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, kPa	
	POORLY GRADED SAND with silt; white,					_	0788	20	<u> </u>		
	very dense (Weathered Sandstone) 1.2 1828.8	1—	SP SM	1	SS	80.0	50/.08	4			DX
	POORLY GRADED SAND with silt; red brown, very dense (Weathered Sandstone)	- - - 2—	SP SM	2	SS	0.08	50/.08	4			
	2.6 1827.4		SP SM	3	SS	0.1	50/.1	4			
The	Stratification lines represent the approximate boundary lines										
bet	veen soil and rock types: in-situ, the transition may be gradual.				Ti	BORI	NG ST	ARTE	D D		05-08-07
WL						BORI	NG CC				05-08-07
WL	ANE MD A		.C			RIG APPF	ROVED		_	DREMA	MD 6045049D

							Cond					
=	LOG	OF BOR	ING	NO	. В	-09)				F	Page 1 of 1
C	LIENT ASCG, Inc.											
S	TE		PRO	JEC	Т			NO40	. Kaih	-4-		
\vdash	Kaibeto, Arizona					SAI	MPLE		Kaib	eto	TESTS	
	Boring Location: STA 34+500, centerline					1		i —			1	_
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1826 m		DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, KPa	
	POORLY GRADED SAND with silt; white	∋ ,	_									
	very dense (Weathered Sandstone)		_ 	SP	1	SS	0.1	50/.1	3			İ
	1.2	1824.8	1—	SM			_					ļ
	POORLY GRADED SAND with silt; red brown, very dense (Weathered Sandstone)		=	SP	2	SS	0.08	50/.08	3			2
	(vveatnered Sandstone)		2—	SM								
		4000.4	_	SP SM	3	SS	0.08	50/.08	4			
1694)	Boring Terminated at 8.5 Feet.	1823.4		SIVI								
ı												
ı												
					İ			ļ				
L												
6												
07/12/												
<u> </u>												
ACON											į	
TERR												
Th	e stratification lines represent the approximate boundary	lines										
g be	tween soil and rock types: in-situ, the transition may be g	radual.					000	NO OT	ADTO			05.00.07
8 W	ATER LEVEL OBSERVATIONS, m VER NE WD VER VOICE VIEW VIEW VIEW VIEW VIEW VIEW VIEW VIE					- 4		NG ST			<u>-</u>	05-08-07 05-08-07
g W	Y Y	6 11:				1	RIG		CME-		OREMA	
W						•		ROVED		_		6045049D
Z						- 1	си ГТ	· · · · · · · ·	- 174	10 OC	ט אטי	

	LOCOLBOR	INC	NO		4/						
	LOG OF BOR	ING	NU). B	5-1U	<u> </u>				F	age 1 of 1
CLI	IENT ASCG, Inc.										
SIT	E	PRC	JEC	T			-				_
<u> </u>	Kaibeto, Arizona			1	C A I	MPLE		Kaib	eto	TESTS	
1	Boring Location: STA 34+800, centerline					VIFLE			Γ.		
90	DESCRIPTION	- 62	BOL			Ę	3H.	%	¥	UNCONFINED STRENGTH, kPa	
일	BESSAII HOA	E	SYM	띮	l	VER	N S/O	"H"	Ę	N F S	
GRAPHIC LOG	A	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m3	NCO	
	Approx. Surface Elev.: 1821 m LEAN CLAY; red brown, very stiff		-	_ <u>z</u> _	 -	~	\ <u>\@</u>	\$0	בֿם	⊃ία	
		-				ĺ					
		-	CL	1	SS	0.46	26	12			İ
	4.4	1 _	\vdash			<u> </u>				1	- 30
	1.4 1819.6 POORLY GRADED SAND with silt; white,	_	SP	2	<u> </u>	0.15	50/.08	7			
	very dense (Weathered Sandstone)	2—	SM		33	0.13	507.08				
		- "	SP	3	SS	0.15	50/.08	2			
	2.6 1818.4 Boring Terminated at 8.5 Feet.		SM								
								- 1			
							·				
								- 1			
	4:	i									
The	stratification lines represent the approximate houndary lines										
	stratification lines represent the approximate boundary lines reen soil and rock types: in-situ, the transition may be gradual.						·				
	TER LEVEL OBSERVATIONS, m						NG ST				05-08-07
	A MD A SUBSTRUCTION OF THE					BORI RIG	NG CC			DE***	05-08-07
WL					•		ROVED	CME-7	_	DREMA	N MD 3045049D

TEBBACON COT 1777

æ		LOG OF	BOR	ING	NO	. B	3-11				-	-	age 1 of 1
	CLI	ENT ASCC Inc										•	age 1 Of 1
	SIT			PRO	JEC	T		<u> </u>					
		Kaibeto, Arizona Boring Location: STA 35+100, centerline			Г	Π	SAI	MPLE		Kaib	eto	TESTS	
		Borning Education. 67A 667 100, deliterinie											_
	GRAPHIC LOG	DESCRIPTION		ei Ei	USCS SYMBOL			RECOVERY, m.	SPT - N BLOWS / 0.3m.	% ⊢	DRY UNIT WT KN/m3	UNCONFINED STRENGTH, kPa	
	APHIC			DEPTH, m.	CS SY	NUMBER	W	COVE	T-N DWS/	WATER CONTENT, %	NO.E	CONF	
	<u>8</u>	Approx. Surface Elev.: 1811 m			Š	Ž	TYPE	<u> </u>	유립	<u>≸8</u>	R N	35	
		POORLY GRADED SAND with silt; white, very dense		_									
		(Weathered Sandstone)		_	SP	1	SS	0.41	76/.25	2			
		(0.6)		1-	SM			<u></u>				<u> </u>	
				_	SP	2	SS	0.08	50/.08	2			
				2-	SM		_	- 0.4	5014				12
		2.6	1808.4	_	SP SM	3	SS	0.1	50/.1	2			111
		Boring Terminated at 8.5 Feet.								·			
1													
	ľ												
١													
ı										ĺ			
707													
T 07/12				1									
ON GD													
RRAC										W			
GPJ TE	The	etestification lines represent the assessing to be added the											
5049D.	betw	stratification lines represent the approximate boundary lines een soil and rock types: In-situ, the transition may be gradua	l,										
6604		TER LEVEL OBSERVATIONS, m				1			NG ST				05-08-07
SE 9K	WL	Y NE WD Y	ĒC:	7				BORI RIG	NG CC	OMPLE CME-7		OREMA	05-08-07 N MD
ᇒ	WL						- -		ROVED				N NID 3045049D

						1					
ं	LOG OF BOR	ING	NO). B	3-12	2			9	F	age 1 of 1
CL	ASCG, Inc.			_							
SIT	E	PROJECT N240 K-1h							_		
\vdash	Kaibeto, Arizona	N310 Kaib							eto	TESTS	
	Boring Location: STA 35+400, centerline				371	VIFEE					
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1795 m	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kn/m³	UNCONFINED STRENGTH, KPa	
	POORLY GRADED SAND with silt, white,	_			5						
	very dense (Weathered Sandstone)	- - 1-	SP SM	1	SS	0.13	50/.13	3			
	1.2 1793.8 SILTY SAND; red brown, very dense	_	1								
	SILTY SAND; red brown, very dense (Weathered Sandstone)	_	SM	2	ss	0.1	50/.1	7			
		2—	SM	3	00	0.1	50/.1				2:
	2.6 1792.4	_	SIVI	٥	33	0.1	507.1	5			
	Boring Terminated at 8.5 Feet.										
							10				
								-			
02								U.			
07/12											
COT							Ì				
CON											
ERRA	V]	ĺ		
- i								ļ			
BOREHOLE 99 660450490 GPJ TERRACON GDT 07/12/07 TA A Pag T T T T T T T T T T T T T T T T T T T	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.										
S WA	TER LEVEL OBSERVATIONS, m			9		30RI	NG ST	ARTE	D		05-08-07
s WL				_		BORI	NG CC	MPLE	ETED		05-08-07
B WL	A NE ND A JELL			J		RIG		CME-7	75 F	DREMA	
WL					_ 7	APPF	OVED				6045049D

	LOG OF BOR	ING	NO	. B	3-13	3				Р	age 1 of 1
CL	IENT ASCG, Inc.										
SIT		PRO	JEC	T							
┝	Kaibeto, Arizona	N310 Kaibeto SAMPLES TESTS									
	Boring Location: STA 35+700, centerline				SAI	VIPLE:		_			
90	DESCRIPTION	10.	B .			Ë	3m.	%	Ę	UNCONFINED STRENGTH, KPa	
GRAPHIC LOG	DESCRIPTION	Ë	USCS SYMBOL	 #		RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	I PER I	
ΑP	¥	DEPTH, m.	SCS	NUMBER	TYPE	Si .	1-00.	ATE	7 { { {	N CO	
<i>छ</i> जा।	Approx. Surface Elev.: 1779 m POORLY GRADED SAND with silt; red	ä	Ď	Ž	F	2	<u> </u>	Šŏ	₽₹	_ <u>5</u> %	
	brown, very dense (Weathered Sandstone)	_									
	(vveatileted Satidstolle)		SP	1	SS	0.08	50/.08	4			1
	2 East	1-	SM								-
		_	SD.	2	100	0.00	50/.08	3			
		_ 2—	SP SM		33	0.06	507.08	3			
	W	_	SP	3	SS	0.1	50/.1	2			
	2.6 1776.4 Boring Terminated at 8.5 Feet.		SM		Н						
	e0										
											1
	2										
									i		
						ľ					
										Ì	
							ĺ	İ			
	22										
	V										
								l			
	%										
The	stratification lines represent the approximate boundary lines		3								
	veen soil and rock types: in-situ, the transition may be gradual.				— :	OPI	NG ST	ADTE	D		05.00.07
WL	TER LEVEL OBSERVATIONS, m						NG ST				05-08-07 05-08-07
	ANE MD A				1	RIG		CME-7		OREMA	
WL					-		ROVED		_		3045049D

	LOG OF BOR	ING	NO	. В	-14	}				P	age 1 of 1
CL	ENT ASCG, Inc.			-							
SIT	E	PRC	JEC	T			NO40	17-11-	-4-		
	Kaibeto, Arizona Boring Location: STA 36+000, centerline	N310 K						Kaib	eto	TESTS	
GRAPHIC LOG	DESCRIPTION	ОЕРТН, т.	USCS SYMBOL	NUMBER	туре	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kn/m³	UNCONFINED STRENGTH, kPa	
<u>σ</u>	Approx. Surface Elev.: 1759 m SILTY SAND; brown, loose		5	Z	F-	<u>«</u>	ល់ផ	ŠŬ	ㅁ호	હે⊂	
	1.2	- - - - 1 -	SM	1	SS	0.46	5	6			W.
	POORLY GRADED SAND with silt; very dense (Weathered Sandstone)	_ _ _ _	SP SM	2	SS	0.41	91/.25	1			8
	2.6 1756.4 Boring Terminated at 8.5 Feet.	- -	SP SM	3	SS	0.13	50/.13	1			
	boning reminiated at 0,0 reet.										
	5				:						
											Ĭ.
7											
The betv	stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.		77								
	TER LEVEL OBSERVATIONS, m	BORING STARTED BORING COMPLETED								05-08-07	
WL WL	ANE MD T			1		BORI RIG		OMPLI CME-	-	OREMA	05-08-07 N MD
WL							ROVED				6045049D

) #	-					
	LOG OF	BOR	ING	NO	. В	-15	7				Р	age 1 of 1		
CLI	ENT ASCG, Inc.											- 5		
SIT	E	-	PROJECT N310 Kaib											
	Kaibeto, Arizona Boring Location: STA 36+320, centerline		SAMPLES						ELU	TESTS				
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1752 m	;	DEPTH, m.	USCS SYMBOL	NUMBER	ТҮРЕ	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, kPa			
	SILTY, CLAYEY SAND; red brown, very loose		_											
	1.2	1750.8	- 1-	SC SM	1	SS	0.46	3	7					
	SILTY SAND; brown, medium dense	1730.0	- -	SM	2	SS	0.46	10	4					
	2.6	<u> 1749.4</u>	2	SM	3	SS	0.46	21	6					
	Boring Terminated at 8.5 Feet.													
The bety WA	stratification lines represent the approximate boundary line veen soil and rock types: in-situ, the transition may be grad	s lual.												
WA	WATER LEVEL OBSERVATIONS, m						BOR	ING ST	TARTE	ED.		05-08-07		
WL	¥ NE WD¥	266		-6		,		NG C			0000	05-08-07		
WL WL	A A						RIG APPF	ROVE	CME-		OREMA	N MD 6045049D		

LOG OF BORING NO. B-16											
CI	ENT LOG OF BOX	46	110		,- I C	•				P	age 1 of 1
	ASCG, Inc.										
SIT	E Kaibeto, Arizona	PROJECT N310 Kaibeto									
一	Boring Location: STA 36+600, centerline				SAI	MPLE:		,		TESTS	Г
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1747 m	ОЕРТН, М.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, KPa	
	SILTY SAND; white, very dense (Weathered Sandstone)		 -	_	Ť						
	(vveatriered Gandstolle)	1—	SM	1	SS	0.05	50/.05	4			
		_	SM	2	SS	0.18	50/.03	4			
		2	SM	3	22	U Uo	50/.08	4			
	2.6 1744.4 Boring Terminated at 8.5 Feet.	-	SIVI	٥	33	0.00	301.00	*			
The	stratification lines represent the approximate boundary lines									1-	
_	reen soil and rock types: in-situ, the transition may be gradual. TER LEVEL OBSERVATIONS, m				1	BOR	NG ST	ARTE	D	<u>-</u>	05-08-07
WL							NG CO		·		05-08-07
WL WL	T NE WD T			J		RIG	(CME-	75 F	OREMA	N MD
WL						APPF	ROVED	K	JS J	OB# 6	6045049D

•	LOG OF BOR	ING	NO	. B	-17		i i				4-64
CL	ENT									Р	age 1 of 1
SIT	ASCG, Inc.	PRO	UEC	т							<u> </u>
	Kaibeto, Arizona	1		<u>. </u>				Kaib	eto		
	Boring Location: STA 36+900, R 5 meters				SA	MPLE:	S 	1		TESTS	
GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1750 m	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, kPa	
	SILTY SAND; brown, very dense (Weathered Sandstone)	_									
	1.1	_ _ 	SM	1	SS	0.43	53/.28	6	:		
	SILTY SAND; white, very dense (Weathered Sandstone)]									
			SM	2	SS	0.05	50/.05	3			
		2-	SM	3	SS	0.1	50/.1	3			27
442	2.6 1747.4 Boring Terminated at 8.5 Feet,	-	\square								000
BOREHOLE 99 8604504BD GPJ TERRACON GDT 07/12/07											
The bety	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.										
WA 8	TER LEVEL OBSERVATIONS, m		10			BOR	NG ST	ARTE	D	_	05-08-07
8 WL	A A A S S S S S S S S S S S S S S S S S						NG CC				05-08-07
WL WL	¥ ¥ ICII					RIG APPF	ROVED	CME-	 	OREMA	N MD 6045049D

BORING S	TARTED		05-	-08-07
BORING C	OMPLETE	ED .	05	-08-07
RIG	CME-75	FOREN	//AN	MD
APPROVE	D KJS	JOB#	6604	5049D

ँ	12	LOG OF BOR	ING	NO	. В	-18	}				P	age 1 of 1
	CL	ENT ASCG, Inc.										×
	SIT		PRO	JEC	T			N240	Kaib	nto.		
		Boring Location: STA 37+200, R 10 meters		1	1	SAI	VPLE:		Naib	BIO	TESTS	
		Borning Education, STA 37+200, IX To meters				<u> </u>						
	GRAPHIC LOG	DESCRIPTION Approx. Surface Elev.: 1744 m	ОЕРТН, М.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m³	UNCONFINED STRENGTH, kPa	
	100	SILTY SAND; brown, medium dense to		<u>-</u>				0,00				
		very dense	1 1 -	SM	1	SS	0.36	13	6			ų.
		1.5 1742.5 Weathered Sandstone	_ _	SM	2	SS	0.46	52	6			
			2—	C14	2		0.40	E0(42	-			
1		2.6 1741.4	_	SM	3	55	0.13	50/.13	5			
		Boring Terminated at 8.5 Feet.										
١												
1												
ı												
ı		5.	,									
		46										
4												
ı												
2/07												
T 07/1												
ON.GD												
FRRAC												
BOREHOLE 99 660450490 GPJ TERRACON GDT 07/12/07	The	stratification lines represent the approximate boundary lines										
5049D	betw	reen soil and rock types: in-situ, the transition may be gradual.				20						
999		TER LEVEL OBSERVATIONS, m						NG ST			1.5	05-08-07
26 37	WL WL	A NE MD A JELL						NG CC			20511	05-08-07
REHO	WL		۵L			■╟	RIG		CME-		OREMA	
Ö	VVL.	2					4444	ROVED	K.	12 170	JU# 6	6045049D

	1000500	1110				6 9					
	LOG OF BOR	ING	NO). E	5-15)				F	age 1 of 1
CL	IENT ASCG, Inc.										
SIT	E	PRO	JEC	T							
H	Kaibeto, Arizona Boring Location: STA 37+380, centerline				CAI	MPLE:		Kaib	eto	TESTS	
L	Borning Location: 31A 37+360, Centerline						<u> </u>		3		
ဗ္ဗ	DESCRIPTION		lg Lg			Ë	E.	%	₹	UNCONFINED STRENGTH, KPa	İ
皇	DESCRIPTION	Ę,	SYM	 EE		ER.	70/0	"F	T N		
GRAPHIC LOG	**	DЕРТН, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT kN/m ³	S N	
<u>σ</u>	Approx. Surface Elev.: 1744 m SILTY SAND; brown, very loose to dense		ő	Ž	F	22	\(\overline{\text{B}}\)	≩ၓ	28	วัน	
	<u> </u>	=									
			SM	1	SS	0.46	3	7			
	35	1-	-				_				
		-			-	0.40					
		_	SM	2	SS	0.46	8	7			
		2-	SM	3	SS	0.46	30	5			
3 8 8	2.6 1741.4 Boring Terminated at 8.5 Feet.	[-	\square								
	borning reminated at 0.0 reet.										
						İ					
								ľ			
									ľ		
										ľ	
								ĺ			
								İ			
:5											
		:									
The betw	stratification lines represent the approximate boundary lines een soil and rock types: in-situ, the transition may be gradual.										
	TER LEVEL OBSERVATIONS, m				E	BORI	NG ST	ARTE	D		05-08-07
	Ÿ NE WD ¥				E		NG CC	MPLE	TED		05-08-07
	A NE MD A JELL				F	RIG		ME-7	'5 FC	REMA	N MD
WL					7	\PPR	OVED	KJ	S JC	B# 66	3045049D

ा		LOG OF BOR	ING	NO	. в	3-20)				Р	age 1 of 1
	CL	ENT ASCG, Inc.										
	SIT	E	PRO	JEC	Т							
		Kaibeto, Arizona Boring Location: STA 37+560, R 10 meters		_		SAI	MPLES		Kaib	eto	TESTS	
	5 LOG	DESCRIPTION	É	MBOL					%'⊥	TWT		
	GRAPHIC LOG	Approx. Surface Elev.: 1739 m	DEPTH, m.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, m.	SPT - N BLOWS / 0.3m.	WATER CONTENT, %	DRY UNIT WT KN/m ³	UNCONFINED STRENGTH, kPa	
		SILTY SAND; red brown, medium dense to loose	_									
			1—	SM	1	SS	0.46	11	10			
		2 1737		SM	2	SS	0.46	4	10			
		CLAYEY SAND; red brown, medium dense	2— —	SC	3	SS	0.46	15	8			
		2.6 1736,4 Boring Terminated at 8.5 Feet,	_									
					22							
707		2										
BOREHOLE 99 66045049D.GPJ TERRACON.GDT 07/12/07		1										ł
049D.G	The betw	stratification lines represent the approximate boundary lines /een soil and rock types: in-situ, the transition may be gradual.										
66045		TER LEVEL OBSERVATIONS, m				ŀ		NG ST				05-08-07
LE 99	WL	ANE MD A LELL	76		1	1	BORI RIG	NG CC			OBENA	05-08-07 N MD
BOREHO	WL		عاك		<i>5</i> 1			ROVED	CME-		OREMA OB#6	6045049D

3.5				
*	25			

-	S	pecimen Identific	cation		Cla	ssification			LL	PL	PI	Сс	Cu
	•	B-01	5.0ft	C	LAYEY SAI	ND with GRA	VEL(SC)		33	16	17		
1	X	B-02	10.0ft		SILT	Y SAND(SM)			NP	NP	NP		
I	▲	B-03	2.0ft	POORLY GR	ADED SAN	D with SILT	and GRAVI	EL(SP-SN	ŊР	NP	NP	0.18	17.95
	*	B-03	30.0ft		SILT	Y SAND(SM))		NP	NP	NP		
12/07	⊚	B-04	20.0ft	POOR	LY GRADE	D SAND witl	n SILT(SP-S	SM)	NP	NP	NP	1.41	2.49
2		pecimen Identific	cation	D100	D60	D30	D10	%Grave	1 %	Sand	%Sil	lt %	Clay
9	•	B-01	5.0ft	25	0.198			18.0] ;	37.0		45.0	
		B-02	10.0ft	2.36	0.184	0.105		0.0	1	B3.0		17.0	
TERRACON.GDI	A	B-03	2.0ft	19	1.346	0.134	0.075	28.0		62.0		10.0	
GPJ	*	B-03	30.0ft	2.36	0.171	0.097		0.0	1	83.0		17.0	
0490	0	B-04	20.0ft	2	0.211	0.159	0.085	0.0	!	93.0		7.0	

GRAIN SIZE DISTRIBUTION

Project: N310 Kaibeto Site: Kaibeto, Arizona Job #: 66045049D

Date: 07-12-07

PI Cc Cu	. PL	LL			ssification	Cla		Identification	Specimen I	S
NP	P NP	NP		M)	Y SAND(SI	SILT		2.0ft	B-05	•
NP	NP	NP		M)	Y SAND(S	SILT		5.0ft	B-06	1
NP 1.34 2.44	NP .	NP	T(SP-SM)	vith S	D SAND w	POOF	2.0ft	B-07		
NP 1.52 2.73	NP.	NP	T(SP-SM)	vith S	D SAND w	POOF	2.0ft	B-08	*	
NP 0.98 2.65	NP NP	NP	T(SP-SM)	vith S	D SAND w	RLY GRADE	POOF	5.0ft	B-09	0 50
%Silt %Clay	%Sand	avel %)10 %Gr		D30	D60	D100	Identification	Specimen l	
21.0	79.0	.0	0.		0.088	0.153	0.6	2.0ft	B-05	9
15.0	85.0	.0	0.		0.09	0.131	2	5.0ft	B-06	Š 🗷
6.0	94.0	.0	086 0.		0.155	0.209	4.75	2.0ft	B-07	E 🔺
10.0	90.0	.0	075 0.		0.153	0.205	2	2.0ft	B-08	
11.0	89.0	.0	0.	ē	0.118	4.75	5.0ft	B-09	ခ်ီ ဝ	
	%Sand 79.0 85.0 94.0	NP avel 9 .0 .0 .0 .0	T(SP-SM) 10 %Gr 0. 0. 0. 086 0. 075 0.		D SAND w D30 0.088 0.09 0.155 0.153	D60 0.153 0.131 0.209	POOF D100 0.6 2 4.75	5.0ft Identification 2.0ft 5.0ft 2.0ft 2.0ft 2.0ft	B-09 Specimen B-05 B-06 B-07 B-08	SPJ TERRACON GDT 07/12/07

GRAIN SIZE DISTRIBUTION

Project: N310 Kaibeto Site: Kaibeto, Arizona Job #: 66045049D Date: 07-12-07

llerracon

Site: Kaibeto, Arizona Job #: 66045049D

Date: 07-12-07

Date: 07-12-07

1 St. 100 CA	0.5)		She	et 1 of 2
Borehole	Depth ft	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	USCS Class- ification	Water Content (%)	Dry Unit Weight (pcf)	Satur- ation (%)	Void Ratio
B-01	2.0	,						2			
B-01	5.0	33	16	17	25	45	SC	7			
B-01	7.0			,				7			
B-02	2.0					Ť		6			
B-02	5.0	,						3			
B-02	10.0	NP	NP	NP	2.36	17	SM	12	,		
B-02	15.0							11			
B-02	20.0							22			
B-02	25.0							20 .			
B-02	30.0		-					15			
B-02	35.0							24	,		
B-03	2.0	NP	NP	NP	19	10	SP-SM	7			
B-03	5.0		14					5			
B-03	10.0							10			
B-03	15.0							21			
B-03	20.0					-		21			
B-03	25.0				,			21			
B-03	30.0	NP	NP	NP	2.36	17	SM	20			
B-03	35.0							12			
B-04	2.0							5			
B-04	5.0							5			
B-04	10.0							7			
B-04	15.0							16			
B-04	20.0	NP	NP	NP	2	7.	SP-SM	22			
B-04	25.0			-				-24			
B-04	30.0							14			
B-04	35.0							11			
B-05	2.0	NP	NP	NP	0.6	21	SM	6			
B-05	5.0							3			4
B-05	7.0							16			
B-06	2.0							- 2			
B-06	5.0	NP	ΝP	NP	2	15	SM	5			
B-06	7.0							5		•	
B-07	2.0	NP	NP	NP	4.75	6	SP-SM	4			,
B-07	5.0							8			
B-07	7.0							8			
B-07 B-08 B-08 B-08 B-09 B-09 B-09 E-09	2.0	NP	NP	NP	2	10	SP-SM	4			
B-08	5.0							4	-		
B-08	7.0					-		4			
B-09	2.0							3			
B-09	5.0	NP	NP	NP	4.75	- 11	SP-SM	3			
B-09	7.0							4			
ŽĮ —		1									

SUMMARY OF LABORATORY RESULTS

Project: N310 Kaibeto Site: Kaibeto, Arizona Job #: 66045049D Date: 07-12-07

TC LAB SUMMARY 66045049

1/2)		She	et 2 of 2
Borehole	Depth ft	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	USCS Class- ification	Water Content (%)	Dry Unit Weight (pcf)	Satur- ation (%)	Void Ratio
B-10	2.0	. 36	17	19	2.36	92	CL	12			
B-10	5.0							7			
B-10	7.0							2			
B-11	2.0	NP	NP	NP	12.5	10	SP-SM	2			
B-11	5.0							2			
B-11	7.0							2			
B-12	2.0							3			
B-12	5.0	NP	NP	NP	0.6	17	SM	7			
B-12	7.0							5			
B-13	2.0	NP	NP	NP	19	12	SP-SM	4			
B-13	5.0							3			
B-13	7.0							2			
B-14	2.0	NP	NP	NP	2.36	13	SM	6			
B-14	5.0							. 1			
B-14	7.0							1			
B-14/15	0.0	NP	NP	NP	12.5	14"	SM	1	,		• /
B-15	2.0					"		7		-	125
B-15	5.0	NP	NP	NP	2	14	SM	4			
B-15	7.0							6			
B-16	2.0							4			· 20
B-16	5.0	NP	NP	NP	9.5	13	SM	-4			
B-16	7.0							4			
B-17	2.0	NP	NP	NP	9.5	18	SM	6			
B-17	5.0							3			
B-17	7.0							3			
B-18	2.0							6			
B-18	5.0	NP	NP	NP	19	17	SM	6			
B-18	7.0							5			,
B-19	2.0							7			
B-19	5.0	NP	NP	NP	4.75	21	SM	7			
B-19	7.0							5	,		
B-19/20	0.0	NP	NP	NP	19	23	SM	2			W
B-20	2.0							10			
B-20	5.0		, garr	. ,			9	10			
B-20	7.0	29	16	13	19	43	SC	8	e : a		
B-7/8	0.0	NP	NP	NP	9.5	10	SP-SM	:×1			

SUMMARY OF LABORATORY RESULTS

Project: N310 Kaibeto Site: Kaibeto, Arizona Job #: 66045049D Date: 07-12-07

TC LAB SUMMARY 66045049D GPJ TERRACON GDT 07/12/07

	Yes			11				1	7		She	et 1 of 1
	Borehole	Depth ft	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	USCS Class- ification	Water Content (%)	Dry Unit Weight (pcf)	Satur- ation (%)	Void Ratio
-	Scour	0.0	NP	NP	NP	25	8	SP-SM	5	•		

SUMMARY OF LABORATORY RESULTS

Project: N310 Kaibeto Site: Kaibeto, Arizona Job #: 66045049D Date: 07-12-07

301 North Howes Street FORT COLLINS, COLORADO 80521 (970) 484-0359 FAX (970) 484-0454

RESISTANCE R-VALUE & EXPANSION PRESSURE OF COMPACTED SOIL **ASTM D2844**

CLIENT:

ASCG Inc.

DATE OF TEST: 17-May-07

PROJECT:

Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4

LOCATION:

B-7 & B-8

TERRACON NO.

66045049D

CLASSIFICATION:

SP-SM

SAMPLE DATA TEST RESULTS

TEST SPECIMEN NO.	1	2	3
COMPACTION PRESSURE (PSI)	350	350	350
DENSITY (PCF)	109.3	112.2	111.5
MOISTURE CONTENT (%)	14.8	13.7	12.4
EXPANSION PRESSURE (PSI)	-0.19	-0.06	-0.03
HORIZONTAL PRESSURE @ 160 PSI	41	37	36
SAMPLE HEIGHT (INCHES)	2.61	2.54	2.59
EXUDATION PRESSURE (PSI)	162.3	228.3	315.8
CORRECTED R-VALUE	62.3	63.4	67.4
UNCORRECTED R-VALUE	59.6	63.4	65.0

R-VALUE @ 300 PSI EXUDATION PRESSURE =

67

301 North Howes Street FORT COLLINS, COLORADO 80521 (970) 484-0359 FAX (970) 484-0454

RESISTANCE R-VALUE & EXPANSION PRESSURE OF COMPACTED SOIL **ASTM D2844**

CLIENT:

ASCG Inc.

DATE OF TEST: 16-May-07

PROJECT:

Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4

LOCATION:

B-14 & B-15

TERRACON NO.

66045049D

CLASSIFICATION:

SAMPLE DATA TEST RESULTS

TEST SPECIMEN NO.	1	2	3
COMPACTION PRESSURE (PSI)	350	350	350
DENSITY (PCF)	119.0	118.4	120.4
MOISTURE CONTENT (%)	12.0	10.8	10.2
EXPANSION PRESSURE (PSI)	-0.12	-0.06	-0.03
HORIZONTAL PRESSURE @ 160 PSI	40	36	34
SAMPLE HEIGHT (INCHES)	2.49	2.52	2.50
EXUDATION PRESSURE (PSI)	175.0	379.5	433.6
CORRECTED R-VALUE	64.2	67.9	70.0
UNCORRECTED R-VALUE	64.2	67.9	70.0

R-VALUE @ 300 PSI EXUDATION PRESSURE =

301 North Howes Street FORT COLLINS, COLORADO 80521 (970) 484-0359 FAX (970) 484-0454

RESISTANCE R-VALUE & EXPANSION PRESSURE OF COMPACTED SOIL **ASTM D2844**

CLIENT:

ASCG Inc.

DATE OF TEST: 17-May-07

PROJECT:

Kaibito Creek N6330(1)1,2&4 and N6331(1)2&4

LOCATION:

B-19 & B-20

TERRACON NO.

66045049D

CLASSIFICATION:

SAMPLE DATA TEST RESULTS

TEST SPECIMEN NO.	1	2	3
COMPACTION PRESSURE (PSI)	350	350	350
DENSITY (PCF)	121.4	117.0	123.2
MOISTURE CONTENT (%)	11.7	17.2	10.7
EXPANSION PRESSURE (PSI)	-0.03	-0.16	-0.06
HORIZONTAL PRESSURE @ 160 PSI	42	39	36
SAMPLE HEIGHT (INCHES)	2.52	2.51	2.53
EXUDATION PRESSURE (PSI)	194.9	255.4	376.3
CORRECTED R-VALUE	66.9	70.5	74.4
UNCORRECTED R-VALUE	66.9	70.5	74.4

R-VALUE @ 300 PSI EXUDATION PRESSURE =

3-			
		W.	

UNIFIED SOIL CLASSIFICATION SYSTEM

Criteria fe	or Assigning Group Symbo	ols and Group Names U	sing Laboratory Tests*			Soil Classification	
					Group Symbol	Group Name [®]	
Coarse Grained Solls	Gravels	Clean Gravels	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E		GW	Well-graded gravel	
More than 50% retained	More than 50% of coarse fraction retained on	Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3 ⁸		GP	Poorly graded gravel	
on No. 200 sieve	No. 4 sieve	Gravels with Fines	Fines classify as ML or MH		GM	Silty gravel ^{F,G,H}	
		More than 12% fines ^c	Fines classify as CL or CH		GC	Clayey gravel ^{f,Q,H}	
	Sands	Clean Sands	Cu ≥ 6 and 1 ≤ Cc ≤ 3 [€]		sw	Well-graded sand	
	50% or more of coarse fraction passes	Less than 5% fines ^o	Cu < 6 and/or 1 > Cc > 3 ^t		SP	Poorly graded sand	
	No. 4 sieve		Sands with Fines	Fines classify as ML or MH		SM	Silty sand ^{GRI}
		More than 12% fines ^o	Fines Classify as CL or CH		SC	Clayey sand ^{q,r,i}	
Fine-Grained Soils	Silts and Clays	inorganic	PI > 7 and plots on or above	"A" line ¹	CL	Lean clay ^{KLM}	
50% or more passes the	Liquid limit less than 50		PI < 4 or plots below "A" line	ı	ML	Siltkum	
No. 200 sieve		organic	Liquid limit - oven dried	< 0.75	OL	Organic clay ^{KLMN}	
			Liquid limit - not dried	< 0.75	OL.	Organic silt ^{K,LM,O}	
	Silts and Clays	inorganic	PI plots on or above "A" tine		СН	Fat clay ^{KLM}	
	Liquid limit 50 or more		PI lots below "A" line		МН	Elastic Silt ^{KLM}	
	•	organic	Liquid limit - oven dried		ОН -	Organic clay ^{KLMP}	
			Liquid limit - not dried	< 0.75		Organic silt ^{KLMO}	
Highly organic solls	Primaril	y organic matter, dark in	color, and organic odor		PT	Peat	

[^]Based on the material passing the 3-in. (75-mm) sieve

^ECu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

Q PI plots below "A" line.

⁸ If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^CGravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

OSands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with slit, SW-SC well-graded sand with clay, SP-SM poorly graded sand with slit, SP-SC poorly graded sand with clay

 $^{^{\}rm F}$ If soil contains \geq 15% sand, add "with sand" to group name.

^GIf fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

HIf fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravet, add "with gravet" to group name.

 $^{^{\}rm J}$ If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay. $^{\rm K}$ If soil contains 15 to 29% plus No. 200, add "with sand" or "with

ⁿIf soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

^L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.

M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^NPI ≥ 4 and plots on or above "A" line.

PI < 4 or plots below "A" line.</p>

PPI plots on or above "A" line.

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

SS:	Split Spoon - 1-3/8" I.D., 2" O.D., unless otherwise noted	HS:	Hollow Stem Auger
ST:	Thin-Walled Tube - 2" O.D., unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	RB:	Rock Bit
BS:	Bulk Sample or Auger Sample	WB:	Wash Boring or Mud Rotary

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value".

WATER LEVEL MEASUREMENT SYMBOLS:

WL:	Water Level	2	WS:	While Sampling
WCI:	Wet Cave in		WD:	While Drilling
DCI:	Dry Cave in		BCR:	Before Casing Removal
AB:	After Boring		ACR:	After Casing Removal

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

RELATIVE DENSITY OF COARSE-GRAINED SOILS

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION

	Standard			
<u>Unconfined</u>	Penetration or		Standard Penetration	
Compressive	N-value (SS)		or N-value (SS)	
Strength, Qu, psf	Blows/Ft.	<u>Consistency</u>	Blows/Ft.	Relative Density
< 500	<2	Very Soft	0-3	Very Loose
500 - 1,000	2-3	Soft	4-9	Loose
1,001 - 2,000	4-6	Medium Stiff	10 – 29	Medium Dense
2,001 - 4,000	7-12	Stiff	30 – 49	Dense
4,001 - 8,000	13-26	Very Stiff	50+	Very Dense
8,000+	26+	Hard		•

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents	Percent of Dry Weight	Major Component of Sample	Particle Size
Trace With	< 15 15 – 29	Boulders Cobbles	Over 12 in. (300mm) 12 in. to 3 in. (300mm to 75 mm)
Modifier	> 30	Gravel	3 in. to #4 sieve (75mm to 4.75 mm)
RELATIVE PROPORTIONS	OF FINES	Sand Silt or Clay	#4 to #200 sieve (4.75mm to 0.075mm) Passing #200 Sieve (0.075mm)

RELATIVE PROPORTIONS OF FINES Descriptive Term(s) of other Percent of

<u>constituents</u>	Dry Weight	<u>Term</u>	Plasticity Index
Trace	< 5	Non-plastic	0
With	5 – 12	Low	1-10
Modifiers	> 12	Medium	11-30
		High	30+

	,

Flexible Pavement Design Analysis

Design Criteria

PROJECT DATA

Pavement Classification	Heavy
Design Life (years)	
Equivalent Axle Loads/Day	
Total EAL's	
Seasonal Variation Factor	2.5
Reliability	85%
Overall Standard Deviation	0.45

SUBGRADE CONDITIONS

AASHTO Classification	A-2-4
% Passing #200 Sieve	15
Plasticity Index	
Correlated R-Value	69
Resilient Modulus MR (psi)	27,668
Design Modulus (psi)	26,000

SERVICEABILITY

Present (2.5 to 5.0)	4.0
Terminal (1.5 to 4.1)	2.0

LAYER COEFFICIENTS	Structural	Drainage
Asphalt Concrete Surface Course	0.44	N/A
Aggregate Base Course	0.11	0.92
Plant-Mixed Bituminous Base	0.25	0.92

Design Calculations

Target Structural Number SN:

1.47

£S	Recomm		ement Section Thickness		Total	Δ
Alternative	Asphalt Concrete Surface	Aggregate Base Course	Plant-Mixed Bituminous Base	Total	Structural Number	Structural Number
A	4.0	ocaroo	Buss	4.0	1.76	0.29
В	2.5	4.0		6.5	1.50	0.03
С	2.0		2.5	4.5	1.46	-0.02

Conversion Factor = 25.4 millimeters/inch

Flexible Pavement Design Analysis

Design Criteria

PROJECT DATA

Pavement Classification	Light
Design Life (years)	20
Equivalent Axle Loads/Day	
Total EAL's	5,000
Seasonal Variation Factor	2.5
Reliability	85%
Overall Standard Deviation	0.45

SUBGRADE CONDITIONS

AASHTO Classification	A-2-4
% Passing #200 Sieve	15
Plasticity Index	0
Correlated R-Value	69
Resilient Modulus MR (psi)	27,668
Design Modulus (psi)	26,000

SERVICEABILITY

Present (2.5 to 5.0)	4.0
Terminal (1.5 to 4.1)	2.0

LAYER COEFFICIENTS	Structural	Drainage
Asphalt Concrete Surface Course	0.44	N/A
Aggregate Base Course		0.92
Plant-Mixed Bituminous Base	0.25	0.92

Design Calculations

Target Structural Number SN:

0.73

	Recommended Pavement Section Thickness Inches			Total	Δ	
Alternative	Asphalt Concrete Surface	Aggregate Base Course	Plant-Mixed Bituminous Base	Total	Structural Number	Structural Number
Α	4.0			4.0	1.76	1.03
В	2.0	4.0		6.0	1.28	0.55
С	2.0		2.0	4.0	1.34	0.61

Conversion Factor = 25.4 millimeters/inch

N6330 Kaibito, Arizona

Project Mngr:	KJS	T
Designed By:	MJD	
Checked By:	KJS	
Approved By:	KJS	
FIL M.		

Terracon

4905 Hawkins NE Albuquerque, NM 87109

	Project No.	66045049D
	Scale:	Not to Scale
	Date:	6-25-2007
9	Drawn By:	Unknown
	Figure No.	A2a

File Name: \66045049D\450459D BLD.dwg

0000+445 B-07

B-08

ROW 23 m

ROW 25 m

Drawing provided by ASCG, Inc. Project No. N6330(1) 1,2&4 and N6331(1) 2&4. Not for construction drawings.

N6331 Kaibito, Arizona

Project Mngr:	KJS
Designed By:	MJD
Checked By:	KJS
Approved By:	KJS

Terracon

4905 Hawkins NE Albuquerque, NM 87109

Project No. 66045049D	
Scale: Not to Scale	
Date: 6-25-2007	
Drawn By: Unknown	
Figure No. A2b	

File Name: \66045049D\450459D BLD.dwg

Approximate
Boring
Location

Legend

N6331 Kaibito, Arizona

Project Mngr:	KJS	
Designed By:	MJD	llerra
Checked By:	KJS	4905 Hawl
Approved By:	KJS	Albuquerque,
File Name: \6	6045049D\	450459D BLD.dwg

Terracon

4905 Hawkins NE Albuquerque, NM 87109

Project No.	66045049D	
Scale:	Not to Scale	
Date:	6-25-2007	
Drawn By:	Unknown	
Figure No.	A2c	

N6331 Kaibito, Arizona

	: KJS	Project Mngr:
lerra	: MJD	Designed By:
4905 Hawki	KJS	Checked By:
Albuquerque, N	: KJS	Approved By:
\450459D BLD.dwg	\66045049D\	File Name: \

				a	G			
--	--	--	--	----------	---	--	--	--

4905 Hawkins NE Albuquerque, NM 87109

 		- 1
Project No	66045049D	
Scale:	Not to Scale	
Date:	6-25-2007	
Drawn By:	Unknown	
Figure No.	A2d	

Approximate Boring Location

Legend

N6331 Kaibito, Arizona

	Project Mngr:	KJS	
	Designed By:	MJD	llerra
	Checked By:	KJS	 4905 Hawk
	Approved By:	KJS	Albuquerque,
	File Name:	\66045049D\	450459D BLD.dwg

Terracor

4905 Hawkins NE Albuquerque, NM 87109

	Project No. 66045049D
	Scale: Not to Scale
	Date: 6-25-2007
9	Drawn By: Unknown
	Figure No. A2e

N6331 Kaibito, Arizona

Project Mngr:	KJS	
Designed By:	MJD	llerra
Checked By:	KJS	4905 Hawk
Approved By:	KJS	Albuquerque, I
File Name:	\66045049D\	450459D BLD.dwg

Terracon

4905 Hawkins NE Albuquerque, NM 87109

Project No. 66045049D	
Scale: Not to Scale	
Date: 6-25-2007	
Drawn By: Unknown	
Figure No. A2f	\mathbb{J}

L	egend
-	Approximate Boring Location