HELIUM SIPHON FINAL CONCEPTUAL DESIGN REPORT

Prepared for

Navajo Nation Department of Water Resources P.O. Box 678 Ft. Defiance, AZ 86504

Prepared by

Keller-Bliesner Engineering, LLC 78 East Center Logan, UT 84321

November 14, 2016

TABLE OF CONTENTS

INTRODUCTION	1
Project Background	
Helium Siphon Deficiencies	1
Alternatives and Selection	
CONCEPTUAL DESIGN	4
INVESTIGATIONS	6
DESIGN CRITERIA	7
Crop Mix Data	7
Weather Data	8
On-Farm Efficiency	
Conveyance Efficiency	
Crop Curves Consumptive Irrigation Requirement	
Design Flow Requirements	
Pipeline Hydraulics	
Pipeline Material	
Backfill DesignBuoyancy Check	
Structure Designs	
REFERENCES	
APPENDIX A – DRAWINGS	
APPENDIX B – DESIGN-BUILD SPECIFICATIONS	
APPENDIX C – SURVEY DATA	19
APPENDIX D – SOIL LOGS	20
APPENDIX E – HELIUM SIPHON PREFERRED ROUTE SELECTION	ON 21
APPENDIX F - HELIUM SIPHON DESIGN REVIEW MEMO	22
APPENDIX G – ABANDONMENT PLAN HELIUM SIPHON	23
APPENDIX G - ABANDONMENT PLANT HELIUM SIPHON	22

INTRODUCTION

The Helium Siphon begins at Hogback Canal, crossing the San Juan River and discharges into the Helium Lateral. This project will replace the Helium Siphon with new pipe, rehabilitate the concrete intake structure adding a new trash rack and safety rope, construct a new outlet structure, and install turnouts according to the conceptual design. The last third of the siphon will be re-routed to better serve the farmland. The project also abandons the current Helium Siphon in the residential areas south of the San Juan River.

Project Background

While in operation, the Helium Siphon served 951 acres via a 40-inch steel coal tar pipeline approximately 9,750 feet long. This siphon is fed by the Hogback Canal and is located in the Shiprock Chapter (Figure 1). The existing inlet structure is functional and will be rehabilitated and used for the new siphon.

Helium Siphon Deficiencies

Deficiencies for the Helium Siphon include:

- The siphon failed in 2009 and no longer conveys water. It has not been determined why
 the siphon doesn't convey water. Work crews have continuously repaired a section of
 the pipe 500 ft north of the San Juan River until they determined that the steel pipe is no
 longer usable.
- The intake channel feeding the siphon intake structure needs to be cleaned coupled with minor rehabilitation, the 40-inch slide gate turnout replaced, trash rack replaced, and the security fence replaced.
- A portion of the existing Helium Siphon south of the San Juan River has had significant development both near and on top of the existing pipeline.
- No log boom or safety rope at the intake structure.

Alternatives and Selection

Because Helium Lateral Siphon is no longer in operation, the alternatives to be considered include:

- 1. Replace the siphon using the existing route.
- 2. Replace the existing 40-inch steel pipe with 36-inch plastic pipe. The existing inlet structure is functional and will be rehabilitated and used for the new siphon. The proposed siphon alignment will be installed west of the existing siphon (Figure 1). The proposed 36-inch siphon alignment is 11,300 feet long and follows the existing alignment for approximately 5,180 feet, crossing the Bluff Road and the San Juan River (Figure 1). Upon crossing the floodplain, the proposed alignment diverts from the existing siphon to avoid new municipal and housing development. The proposed alignment continues along the edge of the development until it ties into the existing Helium Lateral. A new outlet structure is required at the new tie-in location.
 - a. The 36-inch siphon option is the best option if gravity pressure to the school pumping plant is desired. Another option being reviewed for siphon replacement is a 30-inch pipeline. However, it would also require a booster pump to get water to the school pumping plant.
 - b. HDPE and PVC were both examined as pipe material. PVC pipe appears more economical. A more detailed analysis of these options and their costs is in

Appendix E. HDPE will still be used in saturated areas and for highway crossings.

On April 13, 2016, the United States Bureau of Indian Affairs met with the Navajo Nation Department of Water Resources Technical, Construction, and Operations Branch where alternative two was selected (Appendix E). The reason why alternative two was selected was the new route is adjacent to the current farm land and doesn't impact the developed land to the south. We also recommend that PVC pipe be selected over HDPE due to cost savings and familiarity by local entities. The only places where HDPE would be utilized are for road and river crossings.

Three reviews of this conceptual design were completed between the Bureau of Indian Affairs and the Navajo Nation Department of Water Resources from February 25, 2016 until October 11, 2016. Minutes for each review may be found in Appendix F.

In addition, the new route was developed after consulting with local farmers, Dine College, Central Consolidated Schools, and to Shiprock Chapter. The route was finalized in a review meeting held on April 14, 2016. Shiprock Chapter passed a resolution on May 11, 2016 supporting the proposed new route (See Appendix E). The Navajo Nation Department of Water Resources needs to pursue a legal survey of the route and work with the Navajo Nation Land Department to obtain a right-of-way.

Figure 1. Helium Siphon Layout Map

CONCEPTUAL DESIGN

In 2003, NNDWR and Keller-Bliesner Engineering (KB) derived a conceptual design to correct the identified deficiencies. The Helium Siphon's existing steel pipe has exceeded its economic life and is no longer operational, requiring replacement. The conceptual design recommends that the existing 40-inch siphon should be replaced with a 36-inch DR 41 C905 PVC pipeline. PVC was chosen as the piping material because it is economical, non-corrosive, and durable. The 36-inch PVC pipeline is sufficient in size to convey the design flow to meet downstream demand. The pressure rating (DR41 or 100 psi) exceeds 125% of the maximum static pressure which meets recommended practices for addressing surge.

Road crossings and the river crossing will use 36-inch DR26 HDPE pipe sleeved in either the existing 40-inch steel pipe or new steel pipe to complete these crossings. HDPE is used in these locations to eliminate the risk of pipe joints. Repair couplings will be used to transition between the HDPE pipe and PVC pipe.

The existing siphon under the San Juan River should be investigated further to see if it may be utilized as a sleeve prior to designing a new crossing. If the existing siphon is suitable, it will save money, reduce impacts to the river, and reduce uncertainty involved with diverting the river.

The conceptual design uses the existing inlet structure but recommends a new outlet since it discharged to a different location. Drawing D100 in Appendix A shows a conceptual design for the outlet. The outlet includes a valve and orifice plate that maintains upstream pressure while dissipating energy that is discharged into Helium Lateral. The orifice plate is required to ensure water deliver to Central Consolidated existing pump located near the outlet of the current siphon. The existing Helium Siphon turnout from Hogback Canal requires replacement (Figure 2). The siphon intake channel requires rehabilitation with a new security fence around the intake channel and the intake structure (Figure 3 and Figure 4).

Field turnouts will follow a design typical of other irrigation pipelines in the Shiprock area (D105 in Appendix A). The field turnout will consist of a take-off tee, an isolation valve, and air vent, and a riser valve with turner. Air vents on the main line are enclosed in concrete manholes to reduce vandalism as shown on D102 in Appendix A. Flush out valves are to be located in low areas of the pipeline as shown on D103 in Appendix A.

The existing siphon will be abandoned in place (Appendix G). The new siphon follows on the west side of the existing alignment for approximately 5,180 feet to the south edge of the San Juan River floodplain (Figure 1). Dewatering will be required in the San Juan River crossing and throughout portions of the floodplain. Pea gravel will be used to bed the PVC pipe in saturated areas. New laterals are required to serve existing demands originally served by the existing siphon. Most notable is a lateral that will supply the Central Consolidated irrigation pump (See L100 in Appendix A).

Figure 2. Helium Siphon Turnout to be Replaced

Figure 3. Helium Siphon Intake Channel to be Rehabilitated

Figure 4. Helium Siphon Intake Structure

INVESTIGATIONS

The following investigations were completed:

- 1. Original siphon investigation by KB (2003) (Figure 5).
- 2. Siphon alignment investigation by KB in April 2015, and Shiprock Chapter and shareholder preliminary design discussions.
- 3. Topographic surveys by the Navajo Nation Department of Water Resources and Johnson Mapping and Surveying, LLC with support from KB. The original survey was conducted in June 2015. Follow-up surveys were conducted in September 2015 and April 2016. (Appendix C).
- 4. Soil test pits excavated to assess sub-surface soil and identify water table in June 2015 (Appendix D).

In addition, interviews conducted with geotechnical engineers familiar with the area of the Helium Siphon river crossing indicate that the sub-terrain strata is a deep layer of loose alluvium aggregate. This deterred the conceptual design from pursuing a bore underneath the river to cross the San Juan River.

Figure 5. Helium Siphon 40-inch Steel Coal Tar Pipeline Corrosion in 2002

DESIGN CRITERIA

The conceptual design was completed by KB with input from NNDWR. KB was responsible for overall direction, Designs and Specifications, permitting, and reporting.

Designs yet to be completed include:

- Layout drawing
- Security fencing around the inlet and outlet structures

Crop Mix Data

Crop mix data for irrigated lands within the project area (Table 1) are based on surveys given to area farmers

Table 1. Crop Mix Summary for Fruitland-Cambridge Irrigation Project

Crop	Crop Mix (%)
Alfalfa ¹	54%
Alfalfa establishment	6%
Corn 1st Planting ²	13%
Corn 2nd Planting ²	12%
Melons	3%
Pasture (extensive grazing)	10%
Vegetables (warm)	<u>2%</u>
Total	100.0%

Table adapted from surveys provided to Gadii'ahi farmers.

¹Alfalfa is typically planted on a 9-year rotation; thus, 1/9 of the alfalfa acreage is assumed to be in fall establishment. ²Corn plantings are staged so there is a continuous harvest in the fall. Plantings are typically 20 days apart.

Weather Data

Daily climate data for CIR calculations (1980 – 2009) were obtained from a CD-ROM produced annually by Hydrosphere Data Products. This CD contains National Climatic Data Center (NCDC) COOP weather station data (Hydrosphere 2009). Weather data from the National Weather Service Shiprock (USC00298284) weather station were used for the Hogback, Fruitland, Cambridge, and Gadaii'ahi CIR calculations.

On-Farm Efficiency

On-farm efficiency (Table 2) varies based on the irrigation system type employed at the farm level. The most common irrigation types within the project area are graded furrow, border irrigation systems. The associated average design application efficiency (Ea) was used (65%) in the design flow analysis.

Table 2. Probable Application Efficiencies (Ea) for On-farm Irrigation Systems.

On-farm Irrigation System Type	Eá (%)	Average Design Ea (%)
Periodic move lateral (hand or side roll)	60-75	68
Periodic move gun type or boom sprinklers	50-60	55
Fixed laterals (solid set)	60-75	68
Traveling sprinklers (gun type or boom)	55-67	61
Center pivot – standard	75-85	80
Linear (lateral) move	80-87	84
LEPA – center pivot and linear move	90-95	93
Drip/Trickle ¹	85-95	90
Level furrow, border or basin.	50-95	73
Graded furrow, border (75% of runoff reuse)	55-90	73
Graded furrow, border (0% runoff reuse)	50-80	65

Table adapted from the Chapter 2 of the 1993 National Engineering Handbook Tables 2-48, 2-49, 2-50, and 2-51.

Conveyance Efficiency

The Hogback Canal provides water to the Helium Siphon turnout. The canal conveyance efficiency is estimated to be 75%. The siphon conveyance losses will be minimal with the new HDPE pipeline. The siphon conveyance design efficiency is 95%.

Crop Curves

The crop curves (Table 3) used to calculate crop evapotranspiration are primarily developed using data taken from the FAO-56 publication (Allen et al. 1998), and data gathered during irrigation scheduling by Keller-Bliesner Engineering (2000–2004). Other sources are noted in the crop table notes. Typical planting and harvest dates are taken from the local farmers and NIIP historical data.

FAO-56 on pages 95 and 96 describes the crop growth stages (Figure 6) used in the crop curves as follows:

• Initial stage (ini). The initial stage runs from planting date to approximately 10% ground cover.

^{1.} Drip/Trickle application efficiency adapted from Morris et. al 2006.

- Crop development stage (dev). This stage runs from 10% ground cover to effective full cover.
- Mid-season stage (mid). The stage runs from effective full cover to the start of maturity.
- Late season stage (late). The late season stage runs from the start of maturity to harvest or full senescence.

In Table 3, the column headings L_ini, L_dev, L_mid and L_late correspond to the four crop development stages described in FAO-56. These crop stages each have a crop coefficient value (Kc) which is multiplied by the reference crop evapotranspiration (ETo) to obtain crop evapotranspiration (ETc). Kc_ini, Kc_mid and Kc_end are crop coefficient (Kc) values corresponding with each crop stage (Figure 6).

Figure 6. FAO Style Crop Coefficient Curve (Allen et al. 1998)

Consumptive Irrigation Requirement

One of the first steps performed in an irrigation system design analysis is the calculation of peak crop evapotranspiration.¹ Once this is determined, irrigation systems can be adequately sized to meet this peak demand. When peak crop evapotranspiration is calculated, typically a consumptive irrigation requirement (CIR) is also calculated for use in determining a field delivery requirement and a diversion requirement.

To understand consumptive irrigation requirement calculations, the separate components must also be defined. Consumptive irrigation requirement is equal to the crop evapotranspiration²

¹ Evapotranspiration (ET) is the sum of evaporation and plant transpiration.

² Crop Evapotranspiration (ETc) is evapotranspiration from a specific crop, water not limiting.

minus effective precipitation.³ Crop evapotranspiration is calculated by translating the reference evapotranspiration⁴ to the crop. This translation uses a set of coefficients specific to the crop type (Crop Coefficient, Kc). Effective precipitation is calculated based on actual precipitation, the mean monthly consumptive use, and the useable soil water storage. The effective precipitation was computed using the Soil Conservation Service (SCS) TR21 method (SCS, 1970). The useable soil water storage depth of 3 inches was used in this calculation. Using all these components, the daily crop CIR and ET were calculated using proprietary software developed by KB called KB-ET.

The reference evapotranspiration used in this analysis was chosen based on the weather data available at the Shiprock weather station. Since only temperature and precipitation data were available, the 1985 Hargreaves reference evapotranspiration equation was selected for use in KB-ET (Hargreaves et al. 1985). Missing data from the Shiprock weather station (1980 – 2009) were filled using a software tool called CLIME, also developed by KB.

CLIME reads National Climatic Data Center (NCDC) weather data compiled by Hydrosphere Data Products and uses a ratio proportion method to interpolate and fill missing daily temperature and precipitation data with data from the selected neighboring stations (Paulhus and Kohler 1952). For this analysis, daily ratios are calculated for the 30-year period (1/1/1980 – 12/31/2009). These 366 ratio values are then used to relate the temperature and precipitation from one station to another and fill any missing data between the same periods. The weather stations used in the filling process include Shiprock, Fruitland, Farmington, and Bloomfield.

³ Effective Precipitation is the amount of precipitation that is stored in the soil and used by the crop to meet crop ET.

⁴ Reference Crop Evapotranspiration (ETo) is evapotranspiration from a hypothetical grass reference crop, water not limiting.

Table 3. Crop Curve Parameters used for Hogback, Fruitland, Cambridge, and Gadaii'ahi CIR Calculations

Crop nedaligiden	Cutting	Start Date	End Date	Start Temp	End Temp	L_inf	L_dev	L_mid	L_late	Kc_ini	Kc_mid	Kc_end
Alfalfa	1	186	848	25	25	10	30	25	10	0.4	1.2	1.15
Alfalfa	2-3	Previous harvest Previous	45 days after start	-	-	5	20	10	10	0.4	1.2	1.15
Alfalfa	4	harvest	7#	-	25	4	30	20	15	0.3	0.75	0.75
Alfalfa establishment		8/15	0.00	-	25	30	40	60	5	0.4	0.85	0.85
Corn – 1 st planting		4/27	8/14	-	-	20	30	50	10	0.7	1.15	1.05
Corn – 2 nd planting		5/17	9/3	-	-	20	30	50	10	0.7	1.15	1.05
Melons		5/19	8/25	-	-	20	25	60	30	0.5	1.0	0. 5
Pasture		:: - ::	00 0 0	25	25	10	20	170	79	0.3	0.75	0.75
Vegetables		1.50		32	32	25	35	40	20	0.5	1.0	0.75

Table Notes:

- 1. **Alfalfa, 1st cutting.** FAO-56 Table 11. 1 st cutting cycle and 75 day development period. Subsequent cuttings use a 45 day cutting cycle. Alfalfa is usually in flower at harvest, and 3 4 crops per year are achieved. FAO-56 Table 12 Kc Coefficients. The start dates are temperature based and vary from year to year. The initial season start dates are based on the last occurrence of a 25°F (-4°C) temperature in the spring. The season end dates are based on first occurrence of 25°F (-4°C) temperature in the fall.
- 2. **Alfalfa, 2nd and 3rd cutting.** 45-day Development Periods. Alfalfa is usually in flower at harvest, and 3 4 crops per year are achieved. FAO-56 Table 12 Kc Coefficients. The start dates are based on the day of the previous cut date, and the end dates are 45 days later.
- 3. **Alfalfa, 4th cutting.** NIIP Development Periods. Fields are typically pastured with sheep after the 3rd alfalfa cutting. FAO-56 Table 12 Kc Coefficients are for pasture (extensive grazing). The season end dates are based on first occurrence of a 25°F (-4°C) temperature in the fall.
- 4. **Alfalfa establishment**. Navajo Indian Irrigation Project (NIIP) Development Periods. NIIP Kc Values (none in FAO manual). Average start dates are based on typical NIIP planting dates. Season end based dates are bases on the first occurrence of a 25°F (-4°C) temperature in the fall.
- 5. **Corn 1**st and 2nd plantings. FAO-56 Table 11 Development Periods. Maize, sweet, and arid climate. FAO-56 Table 12 Kc Coefficients. Corn plantings are staged for a continuous harvest starting on 4/27. The harvest date is based on 110-day growth period for corn.
- 6. **Melons.** NIIP Development Periods. Kc Values FAO-56FAO-56 Table 12. Pumpkin, Winter Squash. Average season start is based on typical NIIP planting dates. Season end is based on average harvest date NIIP.
- 7. **Pasture.** FAO-56 Table 11 Development Periods. Pasture (extensive grazing). Kc Values FAO-56 (Table 12). Harvest season start/end based on last occurrence of 25°F (-4°C) temperature in the spring and the first occurrence of 25°F (-4°C) temperature in the fall. (FAO-56 Table 11 footnote #4).
- 8. **Vegetables.** FAO-56 Table 11 Development Periods for 120-day sweet melons. FAO-56 Table 12 Kc Coefficients. Pumpkin/squash. Harvest season start based on last occurrence of 32°F frost in the spring. Season end is based on first occurrence of 32°F in the fall or end of curve, whichever comes first.

Design Flow Requirements

For sizing irrigation delivery systems, two different peak irrigation requirements are important. The first is the aggregate peak crop mix irrigation requirement (7 day cumulative mix ET) and the second is the peak water requirement (ET) of any crop on a segment of the delivery system (NEH 1993).

The peak crop mix requirement (including fallow) is used to size canals and structures in the upper end of the supply system, because there is little likelihood that the entire area will be planted to the crop with the maximum peak capacity requirement. However, as you design segments toward the end of the system the maximum peak individual crop ET should be used. This is because the high demand crop could comprise the majority of the service area. The average application efficiency during the peak use period should be used to compute the water requirement.

The design flow requirements were calculated by dividing the peak ET value in inches/day by the product of the on-farm efficiency and the conveyance efficiency values, and then converting these values to gpm per acre (Table 4). The design flow for the Helium Siphon is 8.8 gpm per acre. Through GIS analysis, it was determined that the area to be served by the Helium Siphon is 941 acres. This equates to a siphon design flow of 8,267 gpm or 18.4 cfs.

Pipeline Hydraulics

The 36-inch PVC pipeline size was verified using a hydraulic model in EPANET. A Hazen Williams coefficient of 150 was used for the PVC pipe. The elevation difference between the inlet and the new outlet is 48.5 ft. However, the maximum elevation for water deliveries occurs at the Shiprock School District pumping plant near the existing siphon outlet. The elevation difference between the siphon inlet and the pumping plant intake is 11.9 ft. The siphon head loss at the design flow (18.4 cfs) was calculated to be 9.4 ft. Providing 2.5 ft of head (1.1 psi) at the pumping plant. The maximum velocity of the siphon at design flow is 3.1 fps which will not cause surge or water hammer issues for the pipe and also provide sufficient sweeping velocities.

Table 4. Design Flow Requirements.

	System Level	Field Level Design					
Item	Helium Siphon	Gated Pipe with furrows	Center Pivot	Periodic Move Sprinklers	Drip		
Peak 7-day Crop Mix ET (in/day) ¹	0.34	n/a	n/a	n/a	n/a		
Peak 7-day Average Crop ET (in/day) ¹	n/a	0.34	0.34	0.34	0.34		
Flowrate: No losses and 100% efficiency (gpm/ac)	6.4	6.4	6.4	6.4	6.4		
On-Farm Application Efficiency %	65%	65%	80%	68%	85%		
Conveyance Efficiency %	95%	99%²	99%²	99%²	99%²		
Design Flow Rate (gpm/ac)	8.8	8.4	6.9	8.1	6.5		

Note: This is taken at a 90% exceedance probability and assume 15% of the land is fallow.

²Field lateral pipeline efficiency.

Pipeline Material

The 36-inch DR 41 PVC pipe was evaluated structurally using a hoop stress calculation recommended *Design of PE Piping Systems* (Figure 7). Surge pressure was determined to be 62 psi which is less than the 100 psi pressure rating. The Figure 7 calculations show that the DR 41 PVC meets all hoop stress and surge pressure design requirements.

Navajo Nation Department of Water Resources Helium Siphon Design PVC pipe design

14-Jun-16

By: Michael Isaacson, Keller-Bliesner Engineering, LLC

REF: Handbook of PVC Pipe, page 124

US Water Surface elev 4982 ft
Lowest Elevaton on Pipe 4865 ft
Internal Pressure 50.64935 psi
OD 38.3 inches

Wall thickness 0.934 inches Hydrostatic Design Basis 4000 psi

Safety Factor 2.5 <---- Safety factor for C905

Hoop Stress 1600 psi

Pressure Rating 79.98715 <---- Less than 100 psi specified for DR41 C905

Figure 7. Hoop Stress and Surge Pressure Calculations

Backfill Design

The maximum backfill for the siphon is 5.5 ft. The Timoshenko equation was used to determine the deflection of the PVC pipe with a live load. A deflection of less than 1 percent was calculated indicating that the material selection is more than adequate (Figure 8).

Figure 8. Backfill Design Calculations

Buoyancy Check

Part of the siphon is installed in saturated conditions. The backfill was verified to ensure that the pipe would not float once empty. The minimum backfill of 3.5 ft was used to determine if the weight of the fill would prevent the pipe from floating. The weight of the soil profile above the pipe and the pipe itself is 878 lbs while the buoyant force is 441 lbs (Figure 9). Once backfilled, the pipe will not float when empty.

Figure 9. Pipeline Buoyancy Calculations

Structure Designs

Manhole and drains were designed to ensure that the access pipe and manholes would reach ground level. The outlet was designed according to Reclamation's *Design of Small Canal Structure*, 1978. The downstream water surface was estimated using Manning's Equation.

REFERENCES

- Allen R. G., Pereira, L. S., Raes, D., and Smith, M. 1998. "Crop evapotranspiration: Guidelines for computing crop water requirements." *Irrigation and Drainage Paper No. 56,* FAO, Rome.
- Hargreaves, G. H., and Hargreaves, G. L. 1985. "Irrigation Scheduling and Water Management," Proceedings of the 12th Congress, International Commission on Irrigation and Drainage, pp. 1047 106
- Hydrosphere, 2009. Climatedata™ NCDC Summary of the Day West 1 [CD ROM]. Boulder, Colorado: Hydrosphere Data Products, Inc.
- Keller-Bliesner Engineering, LLC (KB), 2003. San Juan Irrigation System Rehabilitation Plan.
 United States Bureau of Reclamation.
- Morris, M., and Lynne V. 2006. "Measuring and Conserving Irrigation Water" National Center for Appropriate Technology Butte, MT.
- Paulhus, J.L.H., and Kohler M.A. 1952. "Interpolation of Missing Precipitation Records," Monthly Weather Review, August 1952, pp 129-133.
- Plastics Pipe Institute (PPI), 2006. 2nd Edition Handbook of PE Pipe. Plastics Pipe Institute, Irving, TX.
- SCS, 1970. Irrigation Water Requirements, Technical Release No. 21, Soil Conservation Service, Engineering Division, revised, September 1970.
- United States Bureau of Reclamation, 1978. *Design of Small Canal Structures*. United States Small Canal Structures.

APPENDIX A - DRAWINGS

· · · · · · · · · · · · · · · · · · ·					_
				_	
1) 60% Conceptual Designs	05/27/16	SS	SS		
Draft Conceptual Designs	05/07/16	SS	SS		

î —	25	50 Feet
Coordinate System: NI	M West Zone NA	D83
Datum: NAVD88		
Survey Data Source: Jo	hnson Mapping	& Surveying, BIA
File Name: HeliumSinh	on 20160527ee	dwa

	KELLER-BLIESNER ENGINEERING, LLC.	
	r D	_
	Irrigation & Waler Resources	
_	78 F. Center Logan Litab 84321	

Navajo Nation Department of Water Resources	Job No. NNDWR				
Helium Siphon	Date: 05/27/16				
Heliulii Sipholi	Sheet of				
	DRAWING NO.	REV			
Plan & Profile Drawing	P121	①			

This drawing & the ideas & designs	(#)	Verson/Revisions	Datemaporo	Design	Draw	Check	Approved
Incorporated herein are specific to this project	Г			SS	ASB	MI	ML
&, as an instrument of professional service,				00	AGU	IVIL	1911
are the property of Keller-Bliesner							
Engineering. They may not be used, in whole							
or in part, for any purpose without the written	⊭				-	-	
authorization of Keller-Bliesner Engineering							
LLC, & the project owner.							

0.5 0 0.5 1.0 SCALE OF : NTS	KELLER-BLIESNER ENGINEERING, LLC.
Coordinate System:	
Datum:	
Survey Data Source:	Irrigation & Water Resources
[II- Al	78 E. Center Logan, Utah 84321

Navajo Nation Department of Water Resources	Job No. NNDWR				
Hogback Pumping Plant	Date: 04/30/16				
Hogback Fullipling Flant	Sheet 18 of 22				
Helium Siphon	DRAWING NO. REV				
Discharge Structure	│ D100 │⊚				
	2.00				

Air Vent in 48" Manhole

his drawlng & the Ideas & designs	(#)	Verson/Revisions	Date	Design	Draw	Check	Approved	П
corporated herein are specific to this project				SS	ASB	MI	MI	
, as an instrument of professional service,								
re the property of Keller-Bliesner						_		1
ngineering. They may not be used, in whole								
r in part, for any purpose without the written								
ulhorization of Keller-Bliesner Engineering	12-4			$\overline{}$				
LLC, & the project owner.	16 31							1

0.5 0 0.5 1.0 SCALE OF: NTS	KELLER-BLIESNER ENGINEERING, LLC.
Coordinate System:	
Dalum:	
Survey Data Source:	Irrigation & Water Resources
File Name:	78 E. Center Logan, Utah 84321

Navajo Nation Department of Water Resources	es Job No. NNDWR		
Hogback Pumping Plant	Date: 04/30/16		
Hogback Fullipling Flatit	Sheet 19 of 22		
Helium Siphon	DRAWING NO. RE		
Air-Vent Manhole	D102 @		

Blow-Off Valve in 48" Manhole

This drawing a the lucas of ucsigns		Verson/Nevisions	UBIO astoony	Design	DIAW	CHECK	Approved
Incorporated herein are specific to this project				SS	ASB	ML	ML
&, as an instrument of professional service,				- 00	700	1411	
are the property of Keller-Bliesner							
Engineering. They may not be used, in whole							
or In part, for any purpose without the written	\rightarrow			_		_	
authorization of Keller-Bilesner Engineering							
LLC. & the project owner.	0						
	-						

0.5 0 0.5 1.0 SCALE OF : NTS	KELLER-BLIESNER ENGINEERING, LLC.
Coordinate System:	
Datum:	
Survey Dala Source:	Irrigation & Water Resources
File Name:	78 E. Center Logan, Utah 84321

Navajo Nallon Department of Water Resources	Job No. NNDWR Date: 04/30/16		
Hogback Pumping Plant			
Hogback Fullipling Flain	Sheet 20 c	of 22	
Helium Siphon	DRAWING NO.	REV	
Pipe Blow-Off Fixtures	D103	0	

Notes:

- 1. Install Weights Every 10' OC On All Portions of the Pipe that lays with the San Juan River.
- 2. Each Concrete Weight Shall Weigh No Less than 300 lbs.
- 3. Maintain a Minimum of 2" of Concrete Depth to Rebar Accept on the Lifting Rings.

Concrete Weight Detail

This drawing & the ideas & designs (#	Verson/Revisions	Date Design	Draw	Check	Approved	0,5 0 0,5 1,0	0 0,5 1,0	KELLER-BLIESNER	Navajo Nation Department of Water Resources	Job No. NNI	
Incorporated herein are specific to this project	4	SS	ASB	MI	MI	SCALE OF : NTS	SCALE OF : NTS	ENGINEERING, LLC.	Hogback Pumping Plant	Date: 04/30	
&, as an instrument of professional service, are the property of Keller-Bliesner	N .					Coordinate System:	tern:		Trogodok i dilipilig i lalik	Sheet 21	of 2
Engineering. They may not be used, in whole	X					Datum:			Helium Siphon	DRAWING NO.	R
authorization of Keller-Bliesner Engineering	X					Survey Data Source:	urce:	Irrigation & Water Resources	Pipe Weight Blocks	D104	10
LLC & the project owner.						File Name:		78 E. Cenler Logan, Utah 84321	p. = 1.1.3, d. = 100.00		

This drawing & the Ideas & designs incorporated herein are specific to this project &, as an instrument of professional service, are the property of Keller-Bliesner Engineering. They may not be used, in whole or in part, for any purpose without the written authorization of Keller-Bliesner Engineering LLC. & the project owner.

0.5 0 0.5 1.0 SCALE OF : NTS	KELLER-BLIESNER ENGINEERING, LLC
Coordinate System:	
Datum:	
Survey Data Source:	Irrigation & Water Resources
File Name:	78 E. Center Logan, Utah 84321

Navajo Nation Department of Water Resources	Job No. NNDW	R		
Hogback Pumping Plant	Date: 04/30/16	Date: 04/30/16		
Hogback Fullipling Flaint	Sheet 22 of	22		
Helium Siphon	DRAWING NO. F	REV		
Pipe Weight Blocks	D105	⊚│		

APPENDIX B – DESIGN-BUILD SPECIFICATIONS

San Juan River Navajo Irrigation Projects Hogback Irrigation Project Helium Siphon Replacement

DESIGN-BUILD SPECIFICATIONS

Prepared for

Navajo Nation Department of Water Resources Technical Construction and Operations Branch P.O. 678 Ft. Defiance, AZ 86504

Prepared by

Keller-Bliesner Engineering, LLC 78 East Center Logan, Utah 84321 (435) 753-5651

November 14, 2016

PART 1 - GENERAL

1.01 WORK INCLUDED

- A. This scope of work covers all design, material, and workmanship required to replace the Helium Siphon and appurtenances, install trash screen, turnouts, laterals, and construct the blowout and outlet structures per the Drawings and Specifications. This scope of work also covers abandonment of the existing siphon in certain locations in the event construction funding becomes available.
- B. General. The existing Helium Siphon is a 40-inch steel coal tar pipeline that diverts water from the Hogback Canal to the Helium Lateral. The existing siphon is approximately 9,750 feet long, providing water to almost 1,000 acres on the south side of Shiprock, New Mexico.
- C. This project replaces the current pipeline with a new 36-inch PVC pipe and installs new PVC laterals to serve historic demands. The new PVC siphon is 11,303 feet long and follows the existing alignment for approximately 5,200 feet. The siphon crosses the San Juan River and on the south edge of the floodplain, the new alignment diverts from the existing siphon to avoid new municipal and housing development. The new alignment continues along the edge of the developed area, and adjacent to agricultural land served by the siphon, until tying into the existing Helium Lateral about 380 feet north of Highway 64. The new siphon alignment generally follows the existing alignment until reaching the south side of the San Juan River floodplain. The project also installs a 6-inch PVC lateral pipeline from the outlet of Helium Siphon to the Central Consolidated School District irrigation pump located at the end of the existing siphon.
- D. Scope. Work covered includes all design, design approval, demolition, disposal, earthwork, excavation, dewatering, handling, installation, mechanical work, electrical work, concrete work, structural work, backfill, and final grading to complete the work as shown in the conceptual design report and described in these specifications. All material, unless specified, are furnished by the Contractor.

1.02 GENERAL

- A. All design work shall be completed under the direction of a Professional Engineer currently licensed to provide engineering services in the state of New Mexico and qualified to complete the scope of work.
- B. All materials, unless otherwise noted, shall be of new, first-quality manufacture, free from defects and suitable for the intended use. Where manufacture's names are used in the Specifications it is for the purpose of establishing the standard for quality and general configuration. Products of other manufacturers will be considered, provided they meet the same standards and the manufacture's name and product specifications are submitted to the Engineer for approval.

- C. The Owner has secured National Environmental Policy Act (NEPA) compliance for this project with the exception of the Clean Water Act Section 401 and 404 permits. The Contractor shall comply with all the contract specifications to ensure compliance with the NEPA. The Contractor shall assist NNDWR with applying for the 401 and 404 permits during the design phase of the project.
- D. The Contractor shall be responsible for submitting a Notice of Intent (NOI) with the United States Environmental Protection Agency and be responsible for preparing and implementing a Storm Water Pollution Prevention Plan.
- E. The Contractor shall be responsible for complying with New Mexico one-call requirements prior to completing any excavation work.
- F. The Contractor shall provide all other permits, fees, materials, labor, and equipment necessary to complete the work.
- G. All workmanship shall be of the highest quality.
- H. All work shall be performed in strict accordance with these Specifications, and the applicable national, state and tribal law, codes and regulations. In addition, manufacturer's instructions for all materials shall be strictly followed. In the event of disagreement between national and tribal codes and these Specifications, the codes shall prevail. Such situations shall be discussed with the Engineer prior to proceeding with the work in question.
- In the event of conflicts between Specifications, Drawings and field conditions, the Engineer shall be consulted. No changes in the design or construction method shall occur without the review and approval of the Engineer. If changes in the Drawings or Specifications are deemed necessary by the Contractor, details of such changes shall be submitted to the Engineer for review as soon as practical to allow time for review before installation.
- J. Materials damaged in the course of installation shall be repaired or replaced at the discretion of the Engineer. The Contractor shall be liable for damage during handling or installation of all materials, whether provided as a part of this Contract or provided by others, and shall repair or replace the material at the option of the Engineer at the Contractor's expense.
- K. Proper handling and storage of all materials and equipment prior to installation shall be the responsibility of the Contractor.
- L. Cost. The cost of all materials furnished by the Contractor and the cost of all work performed by the Contractor necessary to complete the project as described by the drawings and these specifications and the material specifications shall be included in the prices listed in the Bid Schedule.

1.03 WARRANTY

- A. Contractor warranty. Contractor shall warrant the work to be free from defects for a period of one year after completion of the project. Warranty shall cover all work performed by the Contractor and all materials provided by the Contractor.
- B. Manufacturer warranties. All manufacturer warranties for materials furnished by this scope of work shall be transferred to:

Navajo Nation Department of Water Resources Technical Construction and Operations Branch P.O. 678 Ft. Defiance, AZ 86504

C. Costs. All costs associated with warranting the scope of work as described in the drawings and specifications shall be included in the bid schedule for each item applicable to the warranty.

PART 2 - DESIGN

2.01 GENERAL

- A. Objective. The Contractor shall complete final design of the conceptual design approved by the Owner for replacing Helium Siphon. The conceptual design is described in the Conceptual Design Report.
- B. Materials. The Contractor shall furnish all necessary materials, equipment, and labor necessary to install the 36-inch PVC pipe per Drawings and Specifications.
- C. Qualifications. All work shall be completed under the direction of a Professional Engineer currently licensed in the state of New Mexico and qualified to complete the scope of work. All design documents completed for this scope of work shall be stamped by the Professional Engineer.
- D. Geotechnical Investigation. The Owner has completed some geotechnical investigation of the site. This investigation is located in Appendix D of the conceptual design report. All additional geotechnical work shall be the responsibility of the Contractor.
- E. River Crossing Investigation. The Contractor shall investigate the possibility of using the existing Siphon as a sleeve to cross the San Juan River. The Contractor shall be responsible for all investigative work necessary to complete this investigation. If the existing siphon is found viable for completing the crossing, then the Contractor shall incorporate the river crossing into the design. If the existing siphon is not usable, then the Contractor shall design and assist the Owner with obtaining permits for making a new crossing across the San Juan River.
- F. Survey Data. The Owner has completed a topographical survey of the project area. This may be found in Appendix C of the conceptual design report. All additional survey data shall be the responsibility of the Contractor.
- G. Design Review. The Contractor shall submit to the Owner a design review schedule that includes reviews at:
 - 30% completion
 - 60% completion
 - 90% completion

Each review shall consist of a meeting between the Contractor, the Owner, and the Bureau of Indian Affairs.

- H. Approval. The Contractor shall obtain approval of the design by the Owner prior to any construction.
- I. Design Standards. The Contractor shall comply with the following design standards or approved equivalent:
- J. Minimum Documents. The Contractor shall furnish six (6) copies of the drawings, specifications, and the standard operation manual.

- K. As Built Drawings. The Contractor shall furnish as-built drawings for the replacement within 30 days after construction completion.
- L. Payment. The Contractor shall submit all costs associated with the design for the project and the river crossing investigation in Bid Item 1. This cost assumes that the existing siphon may be used to sleeve the new pipe across the San Juan River and pays for all investigations necessary to determine whether or not the existing siphon is suitable. If the investigations conclude that the siphon cannot be used, then the Contractor shall submit the costs for designing and permitting a new river crossing in Bid Item ADD 5 which will only be executed in the event the existing siphon is not suitable.

PART 3 - SITE CONDITIONS, PREPARATION & RESTORATION

3.01 GENERAL

- A. During construction, disturbance of the area shall be minimized. Construction activity shall be kept to the right-of-way at all times. Activity outside the construction boundary shall be by permission from the owner only. Keep project area neat and orderly at all times, free of rubbish and excess construction materials.
- B. Prevent contamination of the project area. Do not dump waste oil, fuel, rubbish or other similar contaminants on the ground or in any streambed. The Contractor shall avoid contamination of the aquifer, soil or streams with any contaminant and shall be liable for containment and cleanup of any such contamination at his own expense.

3.02 ENVIRONMENTAL QUALITY PROTECTION

- A. Landscape Preservation. The Contractor shall be responsible for restoring any land disturbed by construction activities. This includes preserving the natural landscape by keeping construction impacts to a minimum, limiting all activity within the designated construction boundaries, cleaning the construction area during construction and after completion of the project, re-grading disturbed lands so natural contours are restored, and providing proper drainage to prevent erosion during and after construction. The remediation plan shall be submitted and approved by the Engineer.
- B. Vegetation Preservation. The Contractor shall preserve and protect existing vegetation which is not required to be removed by construction activity
- C. Water Quality Management. The Contractor shall be responsible for any sediment and erosion control, wastewater control, and storm water management for all land within the construction boundary and any drainage to and from the construction boundary during the duration of the project. All Federal, State, and Tribal requirements for maintaining water quality during construction activity shall be met. The Contractor shall prepare and submit a storm water pollution prevention plan and a Notice of Intent as required by the Clean Water Act section 402 permit 14 days prior to construction. The contractor shall submit a weekly inspection sheet of any measures implemented by the storm water pollution prevention plan.
- D. Air Quality Management. The Contractor shall comply with any applicable Federal, State, or Tribal regulations governing air quality for construction activity for the duration

- of the project. This includes all equipment emissions and dust abatement.
- E. Cultural Preservation. The Contractor shall protect any sites identified by the Navajo Nation as having any historical, religious, scientific, pre-historical, or archeological significance warranting preservation. No such areas are currently known to be within the construction boundaries. Should the Contractor discover any additional historical, religious, scientific, pre-historical, or archeological findings, all work involving that site shall cease until clearance is obtained. Expenses incurred by the delay shall be negotiated between the Owner and the Contractor. Any excess disturbances by the Contractor or any individual associated with the Contractor as judged by the Navajo Nation shall be subject to the full extent of the law.
- F. Submittals. The Contractor shall submit to the Owner a copy of any required permit to complete the scope of work two days prior to any construction activity.
- G. Payment. All material and labor costs associated with preserving environmental quality shall be included in the bid schedule for the applicable items. The costs for preparing, submitting, and complying with a storm water pollution prevention plan shall be included in Bid Item 2.

3.03 SAFETY

- A. General. The Contractor shall fully comply with all Federal, State and Tribal safety regulations.
- B. Safety Program. The Contractor shall establish and maintain a safety program during the duration of the project. The Contractor shall submit the safety program to the Owner for approval 14 days prior to any construction activity. Minutes of weekly safety meetings shall be submitted to the Owner for the duration of the project
- C. Payment. The costs for establishing and maintaining a safety program shall be included in Bid Item 2.

3.04 STAGING AND EQUIPMENT SERVICE AREA

- A. The Owner will designate a suitable equipment staging and service area for the Contractor within 1/4 mile of the project area. The staging and service area may be used for parking of equipment and storage of materials prior to installation. The Contractor shall be responsible for security at the staging area. Servicing of equipment and vehicles will be allowed only at the designated service area, except in cases where the repair must be performed on site before the equipment can be moved.
- B. Care shall be taken to avoid fuel and oil spills. All waste material, packaging and unused material shall be removed from the site upon completion of the Contract.
- C. The staging area shall be free of debris and re-graded to its original surface contour upon completion of the Contract.
- D. Costs associated with establishing and maintaining a staging area for the duration of the project shall be Bid Item 2.

3.05 UTILITIES

- A. General. Existing utilities may be located at the site. The Contractor shall identify all utilities, mark them during the duration of the project, and protect them from all construction activity. Any damage to existing utilities by the Contractor or their subcontractors shall be repaired as directed by the utility owner at the Contractor's expense.
- B. NM One Call. The Contractor or any sub-contractor shall submit a confirmation number to the Owner at least two days prior to any excavation at the site. The Contractor shall maintain the confirmation number for the duration of the excavation.
- C. Electricity. The Contractor is responsible for all required electrical requirements necessary to complete construction of the project.
- D. Water. The Contractor is responsible for all required water requirements necessary to complete the project.
- E. Payment. The costs for working with utilities shall be included in Bid Item 2.

PART 4 - MATERIALS

4.01 GENERAL

- A. General. All materials, unless otherwise noted, shall be of new, first-quality manufacture, free from defects and suited for the intended use. Where manufacturer's names are used in the Specifications it is for the purpose of establishing the standard for quality and general configuration. Products of other manufacturers will be considered, provided they meet the same standards and the manufacture's name and product specifications are submitted to the Engineer for approval.
- B. Handling. Materials damaged in the course of transportation or installation shall be repaired or replaced at the option of the Engineer.
- C. Warranties. All material manufacture warranties shall be transferred to the Owner at the completion of the project.
- D. Storage and security. The Contractor is responsible for storing all material including the security of all material for the duration of the project. Any damage or loss shall be repaired or replaced by the Contractor at the Contractor's expense. This is to include any salvage material in the Contractor's care between the time of demolition and transport to the Owner.
- E. Payment. All costs associated with furnishing, handling, storing, and the security of all material furnished by this contract are to be included in the applicable cost in the bid schedule.

4.02 PVC PIPE

- A. Material Furnished by the Contractor. The Contractor shall furnish all PVC pipe required to complete the scope of work.
- B. Material Specifications for 36-inch PVC Pipe. Pipe shall conform to AWWA C905 specification with gaskets meeting ASTM F477 and joints in compliance with ASTM D3139. Pipe shall conform with DR 41 cast-iron pipe outside diameter.
- C. Material Specification for PVC less than 36-inch (for Turnouts). All 12-inch, 8-inch, and 6-inch PVC pipe shall be rigid polyvinyl chloride (PVC) extruded from Type 1, Grade 1 or 2 PVC resin with a hydrostatic design stress of 2,000 psi for water at 73.4 F, designated as PVC 1120 or PVC 1220 conforming to ASTM Standard D1784. Pipe included shall be either12-inch, 8-inch, and 6-inch diameter PIP PVC, class 100 with a Standard Dimension Ratio (diameter over thickness) of not more than 41. All pipe shall be furnished with integral bell gasket joints, conforming to ASTM Standard D3139, "Specifications for Joints for Plastic Pressure Pipes Using Flexible Elastomeric Seals." The recommended lubricant for joining the pipe joints shall be furnished.
- D. C905 PVC Fabricated Fittings. Fittings shall be fabricated from C905 PVC pipe conforming to AWWA C905. All C905 fittings shall have a dimension ratio of DR25. Fittings shall be manufactured with gasketed bell "push-on" ends.

- E. PIP PVC Fabricated Fittings. All PIP PVC fittings shall comply with ASTM D1784, D2564, D2855, and F477. The pressure rating for the fittings is SDR 41 (100 psi). The pressure rating shall be maximum internal pressure ratings, non-shock at 73°F. All PIP PVC fittings shall be manufactured with gasketed bell "push-on" ends.
- F. Payment. Costs for handling, transporting, and storing material furnished by the Owner shall be included in Bid Item 3 for 36-inch PVC Helium Siphon and in Bid Item 10 for 6-inch PVC School Lateral Pipeline.

4.03 HDPE PIPE

- A. Material Furnished by the Contractor. The Contractor shall furnish all HDPE pipe required to complete the scope of work. HDPE pipe shall be used for road crossings and the river crossing.
- B. Material Specifications Smooth Walled Pressurized Pipe. Black PE materials used for the manufacture of polyethylene pipe, tube and fittings shall be PE 3408 high density polyethylene meeting ASTM D3350 cell classification 445574C (formerly PE 2406 meeting 345464C per ASTM D3350-02) and shall be listed in the name of the pipe and fitting Manufacturer in PPI (Plastics Pipe Institute) TR-4 with a standard grade HDB rating of 1600 psi at 73°F. The material shall be listed and approved for potable water in accordance with NSF/ANSI 61.
- C. Fabricated Fittings. Fabricated fittings shall be made by heat fusion joining specially machined shapes cut from pipe, polyethylene sheet stock or molded fittings. Fabricated fittings shall be rated for internal pressure service at least equal to the full service pressure rating of the mating pipe. Fabricated fittings shall be tested in accordance with AWWA C906.
- D. Payment. Costs for handling, transporting, and storing material furnished by the Owner shall be included in Bid Item 3. Costs for furnishing additional material shall also be included in Bid Item 3.

4.04 BLOW-OUT STRUCTURES

- A. General. Two blow-out structures, with associated 6-inch PVC branch saddle, 6-inch PVC tee and blind flange, 6-inch gate valve and steel discharge pipe, and 48-inch manhole is required. The blow-out structures will be used to empty the siphon by gravity flow using the gate valve. The remaining water can be pumped out by accessing the siphon via the blind flange.
- B. Drain Valve. The blow-out structure attached to the 36-inch PVC pipe with a 6-inch weld-on PVC branch saddle that is flanged to tie into a 6-inch PVC tee with blind flange. The 6-inch gate valve attaches to the tee at the tee at 90 degrees as shown in the Drawings. A 6-inch steel discharge pipe is attached to the discharge of the gate valve.
- C. Payment. Costs for furnishing the manholes, drain and associated elements shall be included in Bid Item 4.

4.05 PIPELINE CONCRETE WEIGHT

- A. General. These precast concrete weights shall be cast to the outside diameter of the 36-inch PVC pipe as shown in the Drawings.
- B. Concrete Weight. The external dimensions of the concrete weight shall be conform to the width of the pipe. The length shall be adequate to maintain a weight of now less than 300 lbs. The weight shall be reinforced with #4 rebar at 8" OC throughout. Maintaining a minimum of 2 inches of concrete depth to rebar. Except for the #6 epoxy coated rebar lifting ring.
- C. Payment. Costs for furnishing the pipeline concrete weights shall be included in Bid Item 5.

4.06 CONCRETE

- A. Cement. The cement to be used shall conform to the "Standard Specification for Portland Cement" designation C.150 of the American Society for Testing Materials (ASTM). The recommended cement is Type II Normal Portland Cement. Any request to deviate from this will be subject to approval by the Engineer. No rapid hardening (Type III) cement types will be allowed.
- B. Water. Water to be used for concrete mixing shall be potable water.
- C. Aggregate. Aggregate proposed for concrete shall be subject to inspection and approval by the Engineer. The dust content, measured as the percentage of material passing a 75µm sieve shall not exceed 5% in the case of fine aggregate and 1.5% in the case of coarse aggregate. The fineness modulus shall fall in the range of 1.6 to 3.5 (inclusive). The chloride content of the aggregates shall not exceed 0.03% by mass and the aggregate shall be free of organic materials.
- D. Admixtures. The use of accelerating admixtures will not be allowed. The use of water reducing admixtures is encouraged in order to lower the water/cement ratio.
- E. Mixture Design. The mix shall be designed to conform to the following parameters:
 - 1. 28-day minimum compressive strength fc = 4000 psi
 - 2. Maximum water/cement ration = 0.45 (by weight)
 - 3. Total entrained air = 5% (-1% to +1%)
 - 4. Maximum size of aggregate = 3/4-inch
 - 5. Minimum slump = 2-inch and maximum slump = 4-inch
- F. Mixing, Transporting and Placing. All work shall be conducted in accordance with ACI 212.2, "Guide for Use of Admixtures in Concrete," ACI 211.1. "Recommended Practice for Selecting Proportions for Normal and Heavyweight Concrete," ACI 304. "Recommended Practice for Measuring, Mixing, Transporting and Placing Concrete."
- G. Curing. Minimum times for stripping formwork shall be 48 hours. No concrete shall be backfilled until after a 48-hour curing period. Should cement other than Type I be used, formwork/backfilling times shall be subject to review by the Engineer.
- H. Reinforcement. Reinforcement shall conform to ASTM 615 or ASTM 616 or A617. The minimum characteristic yield strength f_y =60 ksi unless noted otherwise. All reinforcement bars shall be #4 deformed placed on 12-inch centers each way unless noted otherwise. Footings shall have two rows of #4 rebar. Dowel pins 12-inch on center extending at least 12 inches into the vertical walls shall be placed in all footings or

slabs used as footings and tied to the reinforcement steel of the walls. Where required, transition bars between walls and the footings shall be bent to conform to the shape of the structure. All reinforcement plans shall be submitted to the Engineer for approval 15 days prior to forming any structures. Ties for reinforcement shall be black annealed wire not less than 1/16-inch in diameter.

- I. Cover. The minimum cover to any reinforcing bar shall be two inches for 6-inch thick slabs and walls and three inches for 8-inch or greater slabs and walls.
- J. Embedded Items. All items to be embedded in the concrete shall be securely fastened to the reinforcement in the correct positions. No concrete shall be placed before the Engineer has inspected the reinforcement, built-in items and formwork and certified them as ready for concrete placement. Such inspection and certification shall in no way relieve the Contractor of any liabilities due to errors and/or omissions of any part of the construction.

K. Tolerances

Compressive Strengths. No more than 5% of the random samples collected shall yield strengths less than the specified strength and no individual test shall yield a strength more than 10% below the specified strength.

Dimensional Tolerances. Variation in cross sectional sizes, positions of built-in items, plan dimensions, levels and any linear structural dimensions shall be -1/4 inches to +1/2 inches.

- L. Quality Control. All concrete and reinforced concrete work will be subject to inspection and testing according to the provisions of the applicable ASTM standards as listed under Section 1, Volume 01.04, "Steel-Structural, Reinforcing, Pressure Vessel, Railway" and Section 4, Volumes 04.01 "Cement; Lime; Gypsum" and 04.02, "Concrete and Aggregates," without compromising the requirements of other standards and specifications as mentioned elsewhere within this document.
 - The frequency of casting test cylinders for concrete compressive strength tests will be determined by the Engineer. Generally, one set of three will be taken per pour over 5 cubic yards and a minimum of one set per 30 cubic yards placed.
 - ii. No backfill on top of reinforced concrete shall commence before the concrete has reach a minimum of 70% of its design compressive strength.
 - iii. Inspection by the Engineer will be required before re-commencing work after completion of each of the following concreting stages:
 - 1. Placing rebar and built-in items
 - 2. Erecting formwork
 - 3. Placing concrete
 - 4. Stripping formwork
 - 5. Backfilling against the structure

M. Payment. All costs associated with furnishing concrete included in the applicable bid item.

4.07 SECURITY FENCE

- A. General. A commercial grade chain link fence should be installed for security and safety purposes.
- B. Round Steel Pipe. The pipe shall be Schedule 40 standard weight pipe, in accordance with ASTM F1083.
- C. Fence Fabric. The material shall be manufactured from galvanized steel wire. The size of the steel wire core shall be 9 gauge.
- D. Fittings. The fittings shall meet the requirements for ASTM F626.
- E. Gates. The swing gates shall meet the requirement of ASTM F900.
- F. Payment. All costs associated with furnishing the power supply included in Bid Item 5.

4.08 VALVES

- A. General. All pipe valves shall be wafer style steel valves designed to be installed between two ½-inch steel flanges with 150 lb. bolt patterns. Each valve shall include the required bolts, nuts, and washers to install the valve. All bolts, nuts, and washers shall be a minimum of grade 5 and zinc coated steel.
- B. Butterfly Valve. All butterfly valves shall be a wafer style valve. The valve shall have an epoxy coated cast iron body with locating lugs. The resilient seal shall consist of a stainless steel disc with Buna N liner. The shafts shall be fabricated from stainless steel. The bearings shall be bronze. The valve shall be gear operated with a hand wheel.
- C. Continuous Acting Air Vent. Air/vacuum relief valves shall be sized as shown on the Drawings, designed to discharge air until the line is filled and then continuously discharge air once pressurized.
- D. Turnout Air Vent. Air/vacuum relief valves shall be sized as shown on the Drawings, designed to discharge air until the line is filled and then opened once the
- E. Gate Valve. The gate shall be a double disk line gate valve capable of a 60 ft. head. The body shall be epoxy coated cast iron with iron seats that slip onto a CL 80 PIP PVC valve. The operator nut shall be a 2-inch operating nut on a non-rising bronze stem suitable for underground service. The valve shall come with a 4-inch PVC access tube, cap, and operating key.
- F. Riser Valve. All tee riser valves for the turnouts shall be a PIP by O.D steel tee riser valve with a 60-inch riser as manufactured by Gheen Irrigation Works, Inc. Model No. 7015 or approved equal. The fitting shall be epoxy coated.
- G. Valve Opener. All valve openers shall be 90 degree aluminum valve opener with a ring lock that connects to the riser valve. Each turnout shall have one valve opener.
- H. Payment. Costs for providing the valves and hardware to install the valves shall be included in the applicable bid item where a valve has been specified.

PART 5 - WORKMANSHIP

5.01 EXCAVATION

- A. General. The Contractor shall be responsible for obtaining a One Call confirmation number from NM One Call prior to any excavation. A trench shall be excavated in accordance with the Drawings and Specifications.
- B. Safety. All safety procedures shall be followed during excavation including adequate trench shoring, personnel safety, and barricades on open trenches.
- C. Survey. Two elevation benchmarks are provided on each end of the project. All survey requirements are furnished by the Contractor.
- D. Trench Width. The trench shall have a minimum width of the pipe diameter plus 8-inches on each side with the pipe centered in the trench. Up to the top of the pipe, the trench shall not be wider than the diameter of the pipe plus 12 inches on each side.
- E. Trench Depth. Unless otherwise specified, all pipe shall have a minimum cover depth of 3 feet.
- F. Grade. Grade shall be controlled such that when the pipe is installed the invert elevation shall not deviate from that shown on Drawings by more than 0.1 ft.
- G. Dewatering. If dewatering is necessary in order to keep the bottom of the trench free of water, a pump shall be used to pump water out of the trench and disposed of into as allowed by permitting. In areas requiring dewatering, the contractor shall over-excavate the trench by 6-inches to allow for the placement of clean, washed gravel foundation to support the pipe
- H. Trench Bottom Preparation. The bottom of the trench shall be clean and free from protruding stones larger than ½ inch in diameter, hard lumps, angular stones, or abrasive material, to allow the pipe to lie directly on earth in the bottom of the trench.
- I. Safety. All appropriate and applicable safety precautions and regulations shall be followed during excavation, including trench shoring or sloped trench walls for protection of workers where required. Open trenches shall be clearly marked with appropriate barricades when close to public access. All national, state and tribal safety regulations shall be followed.
- J. Payment. All costs associated with excavation per the Specifications and the Drawings shall be included in the applicable bid item.

5.02 HDPE PIPE INSTALLATION

A. Handling. During installation, pipe shall be handled carefully to avoid any damage. Any damaged pipe during trenching and installation shall be replaced by the Contractor at the expense of the Contractor. Any debris in the pipe shall be removed prior to installation. During assembly, pipe ends shall not be left open when installation is not active at the open end. Keep the pipe ends blocked to prevent entry of foreign matter that might clog the system when flushing.

- B. Heat Fusion Joining. Joints between plain end pipes and fittings shall be made by butt fusion. The butt fusion procedures used shall be procedures that are recommended by the pipe and fitting Manufacturer. The Contractor shall have a minimum of one year experience installing large diameter HDPE pipe and shall ensure that persons making heat fusion joints have received training in the Manufacturer's recommended procedure. The Contractor shall maintain records of trained personnel, and shall certify that training was received not more than 12 months before commencing construction. External and internal beads shall not be removed.
- C. Butt Fusion of Unlike Wall Thickness. Butt fusion shall be performed between pipe ends, or pipe ends and fitting outlets that have the same outside diameter and are not different in wall thickness by more than one Standard DR, for example, SDR 13.5 to SDR 17, or SDR 11 to SDR 13.5. Transitions between unlike wall thickness greater than one SDR shall be made with a transition nipple (a short length of the heavier wall pipe with one end machined to the lighter wall). SDR's for polyethylene pipe are 7.3, 9, 11, 13.5, 17, 21, 26, 32.5 and 41.
- D. Field Cutting. Pipe ends should be squarely cut to 90°± 5°. Do not use bar chain lubrication if cutting pipe with a chainsaw.
- E. Pipe Joining. The joining of the pipe shall be accomplished according to the manufacturer's specifications. Assemble the joints in as straight an alignment as possible. The manufacturer's recommended maximum joint deflection shall not be exceeded at any time. ASTM standards say that fusion is generally not recommended below -4°F without special provisions. Follow all guidelines set forth in ASTM F2620.
- F. Pipe Repair. Damaged portions of the HDPE pipe may be repaired using electrofusion repair saddles, or if the damage is sufficiently extensive a section of pipe may be cut out and removed.
- G. Transition to PVC Pipe. HDPE pipe shall be connected to PVC pipe using steel reducing couplings such as the Romac Style RC400 or approved equal. The coupling shall be wrapped in plastic visqueen sealed on the ends with duct tape.
- H. Payment. All costs associated with pipe installation per the Specifications and Drawings shall be included in Bid Item 3.

5.03 PVC PIPE INSTALLATION

- A. Handling. During installation, pipe shall be handled carefully to avoid any damage. Any damaged pipe during trenching and installation shall be replaced by the Contractor at the expense of the Contractor. Any debris in the pipe shall be removed prior to installation. During assembly, pipe ends shall not be left open when installation is not active at the open end. Keep the pipe ends blocked to prevent entry of foreign matter that might clog the system when flushing.
- B. Field Cutting. Where it is necessary to make field cuts in the pipe at fitting locations, the pipe may be cut using a hand saw, or power saw with a fine toothed blade or abrasive disk. Care should be taken to avoid chipping the pipe. If the pipe is chipped

- or cracked, it shall be re-cut to remove the damage area. After cutting, the pipe end shall be beveled to match the factory provided spigot end using a beveling tool, wood rasp, or power grinder. Prior to cutting or beveling, the pipe should be marked on its entire cut line to assure a straight cut. After cutting and beveling, the proper spigot penetration depth shall be marked on the pipe prior to assembly.
- C. Pipe Assembly. The assembly of the gasket jointed pipe shall be accomplished according to the manufacturer's specifications. Only manufacturer recommended lubricant shall be used. The gasket race, gasket, bell and spigot shall be thoroughly cleaned before assembly. Install the gasket prior to lubrication. Lubricate and assemble according to manufacturer's recommendations. Do not "bottom" the spigot in the bell during assembly. The proper depth of penetration will be marked on the pipe by the manufacturer. Assemble the joints in as straight an alignment as possible. The manufacturer's recommended maximum joint deflection shall not be exceeded at any time.
- D. Elbows. Unless specified, all direction changes shall be accomplished with a prefabricated steel elbow. Turnouts shall be accomplished as shown on the drawings.
- E. Fitting Installation. Manufacturer directions shall be followed. All fittings shall be inspected prior to back fill.
- F. Thrust Blocks. Thrust blocks are required for all horizontal tees, elbows, and termination ends. Concrete used for thrust blocks shall be a minimum 3,000 psi mix. The thrust block shall be poured so that the specified bearing area specified is achieved. A minimum distance of 1 ft between the pipe and the undisturbed trench wall shall be maintained. Thrust blocks shall not be backfilled until 24 hours after they have been poured.
- G. Payment. All costs associated with installation of the 36-inch PVC Helium Siphon shall be included in Bid Item 3. All costs associated with installation of the 6-inch PVC School Lateral shall be included in Bid Item 10.

5.04 PVC PIPE CONNECTION TO EXISTING SIPHON INLET TRANSITION STRUCTURE

- A. General. At the siphon inlet on the east side of the arroyo, new 36-inch PVC pipe will be connected to the existing concrete structure.
- B. Connect Pipe to Siphon Inlet. The Contractor will design the connection of the new PVC pipe to the existing concrete structure.
- C. Trash screen. The Contractor shall design, fabricate and install a trash screen on the upstream side of the inlet that matches the existing inlet structure.
- D. Backfill. The new connection shall be backfilled and compacted to 95 percent density a standard proctor.
- E. Payment. All costs associated with pipe installation per the Specifications and

Drawings shall be included in Bid Item 8.

5.05 NEW SIPHON OUTLET TRANSITION STRUCTURE AND CONNECTION TO PVC PIPE

- A. General. A new siphon outlet transition structure shall be constructed that will be the connection between the termination of the PVC pipe and the beginning of the existing earthen canal.
- B. Construct Outlet Transition Structure. The structure as shown on the drawings shall include a 36-inch to 24-inch reducer, a 24-inch shut-off valve, a 14-inch diameter orifice plate for reducing pressure, a 24-inch compression coupler, a 36-inch to 24-inch reducer and a pipe that is inserted into the new concrete structure. The 24-inch pipe shall be carbon steel properly protected underground from corrosion.
- C. Concrete structure. The concrete structure shall be designed, furnished and installed by the contractor on a suitable foundation and with an energy dissipation wall as shown on the drawings. The concrete structure shall be configured provide a safe transition for flow to the earthen canal.
- D. Payment. All costs associated with the outlet transition structure per the Specifications and Drawings shall be included in Bid Item 6.

5.06 BACKFILL

- A. General. Backfill shall follow shortly after the installation of the PVC pipe. The bedding material placed within the haunches of the pipe and at least 12 inches above the top of the pipe shall be free from stones larger than 1 inch in diameter, angular stones, abrasive or frozen material, and free of debris or other organic materials. The backfill material shall be placed in a manner that minimizes voids throughout the trench but particularly around the pipe. Backfill below the haunches shall be compacted in 6-inch lifts to 85% of standard proctor. The final backfill (from at least 12" above the crown of the pipe to the top of the trench) shall be free from stones larger than 4 inches in diameter, clumps of frozen soil, rubble or other such material. In most cases, the material that was originally excavated can be used for final backfill. Following backfill of the trench, the surface shall be re-graded to the original ground surface with the trenched area mounded to allow for backfill settlement.
- B. Saturated Area. For locations where the PVC pipe is in saturated areas, the bedding shall be clean crushed 1-inch gravel or chips, with a gradation as follows:

Passing 1-inch Sieve	100%
Passing 3/4-inch Sieve	90-100%
Passing 38-inch sieve	20-55%
Passing #4 Sieve	
Passing #8 Sieve	

C. Unsaturated Area. For locations where the PVC pipe is in unsaturated areas, the backfill shall be compacted to 85% of standard proctor below the haunches, and 80% of standard proctor above the haunches.

- D. Structural Backfill. All structural backfill shall be compacted to a density of 95% of standard proctor.
- E. Payment. The cost for backfilling and surface re-grading shall be included in the applicable bid item.

5.07 BLOW-OUT STRUCTURE

- A. General. Two blowout structures for draining and accessing the pipe shall be installed. The structure shall be able to gravity discharge the siphon for water located above the ground elevation of the drain. The remaining water in the drain below the ground elevation shall be pumped out.
- B. Payment. The cost for the drain shall be included in Bid Item 3.

5.08 PIPELINE CONCRETE WEIGHT

- A. General. A precast concrete weight shall be placed every 10 feet throughout the San Juan River crossing and the secondary channel crossing. The purpose of the weight is to prevent the pipe from floating when empty.
- B. Payment. The cost for concrete cap shall be included in Bid Item 6.

5.09 SITE RESTORATION

- A. General. The entire construction site shall be restored to original or better conditions.
- B. Fields. Locations within fields shall be graded to original condition so that the pipe does not form a barrier to surface irrigation operations. The Contractor shall disk the disturbed ground once completed.
- C. Payment. The cost for site restoration shall be included in Bid Item 3.

5.10 ROAD CROSSINGS

- A. General. Helium Lateral Pipeline crosses Bluff Road as shown on the Drawings. All workmanship and materials shall conform to the Bureau of Indian Affairs Road Department standards. If the geology allows for it, the crossing shall be accomplished by direct boring the road to the grades and elevations shown in the approved design. Pipe that is damaged during unloading, handling or installation shall be replaced as directed by the Engineer at the expense of the Contractor.
- B. Permit. The Contractor shall apply to the Bureau of Indian Affairs for a road crossing permit. The Contractor shall comply with the road crossing permit.
- C. Bore Installation. The steel casing pipe shall be installed to the proper alignment and grade as shown in the approved design by direct boring. No open cut installation will be allowed within the highway right-of-way if a bore can be reasonably accomplished. The steel pipe shall be installed such that there is no annular space between the pipe and the ground through which the pipe is installed.

- D. HDPE Pipe Installation. Once the steel casing has been installed, the Contractor shall insert the 36-inch HDPE pipe through the steel casing. All fuses joints shall be completed and visually inspected to ensure the joint has been fused prior to installation.
- E. Transition to PVC pipe. The HDPE pipe shall be joined to the PVC pipe on each side of the steel casing five feet from the end of the casing. The pipes shall be joined by a repair coupler specifically designed to join two pipes with different diameters and materials. The coupling shall be wrapped and sealed with plastic visqueen and duct tape.
- F. Utility Markers. 60-inch long by 3.75-inch fiberglass purple posts (for irrigation) shall be placed on the edge of the highway right-of-way marking the location of the pipeline once the pipeline has been backfilled and graded.
- G. Payment. All costs associated with installation of the road crossing per the Specifications and Drawings shall be included in Bid Item 8.

5.11 RIVER CROSSING

- A. General. Helium Siphon Pipeline crosses the San Juan River as shown on the Drawings. The existing siphon has a 40-inch coal tar epoxy lined steel pipe. It is NNDWR's intent that this section of pipe may be utilized as a sleeve to insert a new 36inch HDPE pipe through, thus avoiding the permitting and costs of constructing a new crossing. If this is not possible, then the Contractor shall design and install a new crossing.
- B. Investigation. During the design process, the Contractor shall excavate each end of the existing siphon on the river and investigate the integrity of the existing steel pipe. If the steel pipe is found to be usable, then it may be used as a sleeve. If the steel pipe remains uncertain, then the pipe will be abandoned and a new crossing is to be designed by the Contractor.
- C. Permits. The Contractor shall be responsible for obtaining a Section 401 permit from Navajo EPA and a Section 404 permit from the US Corps of Army Engineers if a new crossing has to be completed.
- D. Crossing. The Contractor may design either a bore or an open cut crossing based on geology and permitting. The Contractor shall select a sleeve suitable for slipping the 36-inch HDPE pipe.
- E. HDPE Pipe Installation. Once the sleeve has been installed, the Contractor shall insert the 36-inch HDPE pipe through the sleeve. All fuses joints shall be completed and visually inspected to ensure the joint has been fused prior to installation. HDPE pipe shall be installed for the length of the river crossing plus 200 feet on each side of the river.
- F. Transition to PVC pipe. The HDPE pipe shall be joined to the PVC pipe on each side of the sleeve five feet from the end of the sleeve. The pipes shall be joined by a repair

- coupler specifically designed to join two pipes with different diameters and materials. The coupling shall be wrapped and sealed with plastic visqueen and duct tape.
- G. Dewatering. The Contractor shall be responsible for all dewatering of the project area for the duration of the project.
- H. Payment. The Contractor shall submit all costs associated with completing the river crossing investigation and then subsequent insertion of the HDPE pipe into the existing sleeve in Bid Item 5. If the investigations conclude that the siphon cannot be used, then the Contractor shall submit the costs for designing, permitting, and completing a new river crossing in Bid Item ADD 5. Bid Item ADD 5 is only implemented in addition to Bid Item 5 in the event a new crossing is installed.

5.12 TURNOUTS

- A. General. The Contractor shall design and install turnouts as shown on the Drawings. All turnout locations shall be finalized during the design process in consultation with the permit holder whom is served by the turnout.
- B. A turnout consists of a reducing tee, an isolation gate valve, conveyance pipe to the field, an air vent on a riser, and a riser valve with a valve turner.
- C. Fitting Installation. Manufacturer directions shall be followed. All fittings shall be inspected prior to back fill.
- D. Thrust Blocks. Thrust blocks are required for all horizontal tees, elbows, and termination ends. Concrete used for thrust blocks shall be a minimum 3,000 psi mix. The thrust block shall be poured so that the specified bearing area specified is achieved. A minimum distance of 1 ft between the pipe and the undisturbed trench wall shall be maintained. Thrust blocks shall not be backfilled until 24 hours after they have been poured.
- E. Payment. All costs associated with installation of the turnouts shall be included in Bid Item 9

5.13 SAFETY

- A. Safety rope. A safety rope upstream of the trash screen with floating buoys shall be installed to prevent persons who have fallen into the canal from floating onto the screen.
- B. Safety ladder. A ladder shall be installed upstream of the trash screen in conjunction of the safety rope to allow a person to climb out of the canal without venturing onto the trash screen.
- C. Payment. The cost for the safety rope and safety ladder shall be included in the applicable Bid Item.

5.11 SECURITY FENCE

A. General. For security and safety purposes, a commercial grade fence should be designed and installed around the new outlet structure and the existing intake channel

and intake channel. The security fences shall be installed, in accordance with the ASTM F567 standards.

B. Payment. The cost for the security fence shall be included in the applicable Bid Item.

END OF SECTION

PART 6 – PIPE ABANDONMENT (IF AUTHORIZED BY THE OWNER)

6.01 GENERAL

- A. General. Abandoning the pipe in certain locations may be authorized under this scope of work if construction funding is available. The Owner shall notify the Contractor in writing if this scope of work is to be executed.
- B. Scope of Work. The scope of work to abandon pipe includes all mobilization, traffic control, barriers, excavation,, cutting, welding, concrete pumping, backfill, and restoration necessary to abandon the pipe as shown in the drawings and specifications.
- C. Public Safety. The Contractor is to safe-guard the safety of the public during the completion of this scope of work. This includes all traffic control, barriers, and access to the works. Any damage to individuals and property associated with this scope of work shall be the responsibility of the Contractor.
- D. Site Conditions, Preparations, and Restorations. All provisions of Section 3 of these Specifications apply.
- E. Payment. All costs associated with abandoning the pipe as described by the specifications and drawings (See Appendix G of the Conceptual Design Report) shall be included in ADD 10 of the Bid Schedule.

6.02 FINAL DESIGN

- A. General. The Contractor shall complete the final design of the Pipe Abandonment according to the Conceptual Design (See Appendix G of the Conceptual Design Report) per Section 2 of these specifications.
- B. Payment. All costs associated with abandoning the pipe as described by the specifications and drawings shall be included in ADD 10 of the Bid Schedule.

6.03 MATERIALS

- A. General, 4.01 of these Specifications apply.
- B. Cellular Concrete. Cellular Concrete used to seal the pipe sections shall adhere to ASTM C869 and texted according to ASTM C796. The specifications shall be:
 - a. Cast Density: 32 PCF
 - b. 28 day minimum compressive strength: 120 psi
 - c. Minimum Bearing Capacity: 8.6 tons/ft^2
 - d. Elastizill PS or approved equal.
- C. Payment. All costs associated with abandoning the pipe as described by the specifications and drawings shall be included in ADD 10 of the Bid Schedule.

BID SCHEDULE

No.	Description	Qty	Unit	Unit Cost	Extension
1	Design project per Drawings and Specifications	1	ea		
2	Mobilization and Demobilization	1	ea		
3	Furnish and install 36-inch PVC pipe and fittings not specified in Bid Schedule per Drawings and Specifications	11,302	ft		
4	Furnish and install blowout structure per the Drawings and Specifications	2	ea		
5	Furnish and install the San Juan River crossing using the existing siphon per Drawings and Specifications	1	ea	ř/	
6	Furnish and install concrete outlet transition structure per Drawings and Specifications	1	ea		
7	Tie-in 36-inch PVC pipe to inlet structure per Drawings and Specifications	1	ea		
8	Furnish and install road crossing per Drawings and Specifications	1	ea		
9	Furnish and install turnouts per Drawings and Specifications	7	ea		
10	Furnish and install the 6-inch PVC school lateral pipeline.	4,810	ft		
		-		Sub-total	
	Navajo N	Nation Bus	iness Acti	vity Tax (5%)	
				Total	
ADD 5	Design, permit, and install a new crossing of the San Juan River if the existing siphon is not suitable for using as a sleeve. OPTION 5 is in addition to Bid Item 5 and is initiated in the case a new crossing is required.	1	ea		
ADD 10	Design, permit, and abandon existing pipe.	1,200	ft		

APPENDIX C - SURVEY DATA

```
o1 2101612.336
                   2468413.925 4957.966 SCP
   2
      2110281.652
                   2471858.701 4990.232 SCP
                   2465059.085 4914.059 SCP
   3
       2103409.62
      2105412.247
                   2468820.399 4886.159 scp
   4
   5
      2104866.329
                   2467833.017 4892.873 scp
                   2471102.056 4950.618 scp
   6 2108995.152
                   2471161.802 4954.299 ng
      2109055.809
   7
   8 2109055.769
                   2471161.862 4954.215 scp
   9 2109055.759 2471161.866 4954.256 scp
 999 2105412.315
                    2468820.45
                                4886.11 NG
                   2464828.294 4914.553 ng
1000 2103441.397
1001 2103475.513
                   2465101.637
                                4911.67 ng
                   2465386.537 4911.058 ng
1002 2103530.253
1003 2103706.408
                   2465746.432 4909.329 ng
1004
       2103795.36
                   2465922.851 4907.357 ng
                   2466098.253 4905.554 ng
1005 2103886.326
1006 2103983.547
                   2466275.808 4904.515 ng
1007 2103388.155
                   2465047.874 4913.782 ng
1008 2104010.797
                   2466326.165
                                4904.06 ng
1009 2104068.551
                   2466456.296 4903.614 ng
1010 2104193.671
                   2466694.359 4900.502 ng
1011 2104251.258
                   2466812.598 4899.229 ng
1012 2104268.377
                   2466846.251 4899.108 ng
       2104341.03
                   2466989.504 4897.536 ng
1013
1014 2104456.063
                   2467168.947 4895.094 ng
1015 2104497.488
                   2467307.458 4894.103 ng
                   2467614.001 4891.865 ng
1016 2104730.293
1017
       2104760.04
                   2467662.511 4891.875 ng
1018 2104884.859
                  2467820.626 4891.678 ng
1019
     2104953.446
                    2467899.86
                                4891.21 ng
       2105024.11
                  2468063.945 4890.074 ng
1020
1021 2105069.151
                   2468229.782 4888.674 ng
1022 2105101.817
                   2468359.101 4887.925 ng
1023 2105115.061
                  2468478.351 4888.054 ng
1024 2105137.609
                    2468678.81
                                4887.98 ng
1374 2110148.214
                  2471647.916 4979.267
1375 2110143.423
                  2471659.652 4982.102
1376 2110140.962
                  2471669,779 4984,373
1377 2110127.579
                  2471666.925 4984.844
1378 2110125.529
                  2471661.295 4981.831 ng
1379 2110118.438
                  2471654.437 4978.096 ng
1380 2110107.888
                  2471651.675 4976.788 ng
                               4976.77 ng
1381 2110102.828
                  2471658.639
1382 2110083.766
                  2471649.552 4977.106 ng
                  2471642.164 4976.791 ng
1383 2110072.837
1384
     2110048.772
                    2471629.49 4975.266 ng
1385 2110021.775 2471613.459 4974.423 ng
```

```
2109996.834 2471605.718 4972.837 ng
1386
1387
      2109960.578 2471574.948
                                 4971.28 ng
1388 2109911.929 2471531.388 4969.387 ng
1389 2109690.345 2471437.143
                                 4964.18 ng
1390
      2109525.048 2471366.844
                               4961.667 ng
                               4962.631 ng
1391 2109180.128 2471212.136
1392 2109180.134 2471212.108
                                 4962.62 ng
1393
     2109175.213
                   2471212.396 4962.631 ng
1394 2109168.065
                   2471215,167
                               4958.837 ng
1395 2109136.645 2471214.594
                                  4956.8 ng
     2109130.498 2471215.455 4956.299 ng
1396
1397 2109093.864 2471199.918 4951.179 ng
1398
      2109094.726 2471170.429
                                4952.47 ng
1399 2109080.359 2471161.217
                                4950.53 ng
1400
       2109064.91 2471153.033 4949.464 ng
1401
       2109059.46 2471148.013 4948.289 ng
1402
      2109071.451 2471140.672 4950.974 ng
1403
      2109041.489 2471129.602 4949.731 ng
1404
      2109032.888 2471119.544
                                4946.66 ng
1405
      2109026.606 2471113.418 4946.254 ng
1406
      2109022.701 2471104.658 4950.978 ng
                   2471116.513 4950.756 ng
1407
      2108998.685
       2108973.98 2471129.391 4950.084 ng
1408
1409
      2108952.941 2471130.883
                                4950.02 ng
      2108957.355 2471120.663 4949.631 ng
1410
1411 2109015.099 2471124.272 4943.242 ng
                                4939.14 ng
1412 2109003.996
                   2471135.63
1413 2109010.161
                   2471143.92 4940.042 ng
1414
      2108985.187
                  2471148.996 4933.474 ng
1415
     2108986.347
                  2471159.037 4932.868 ng
1416 2108964.861
                  2471165.045 4926.942 ng
1417
      2108952.116
                    2471160.3 4924.084 ng
                  2471168.222 4919.616 ng
1418 2108938.893
                                  4913 ng
1419 2108913.824
                  2471163.614
1420 2108902.626
                  2471151.233 4908.284 ng
1421
     2108895.033
                  2471159.253 4907.129 ng
1422 2108896.498
                  2471145.219 4905.029 ng
1423
       2108891.19
                   2471135.01 4900.917 ng
1424 2108879.719 2471148.824 4902.113 ng
1425
     2108886.516
                  2471121.944 4895.168 ng
1426
     2108863.194
                  2471112.215 4893.241 ng
                  2471100.955 4887.997 ng
1427
     2108790.708
1428
     2108763.378
                    2471086.1 4886.675 ng
1429
     2108700.826
                  2471066.861 4886.021 ng
1430
     2109993.567
                  2471605.982 4972.713 ng
1431
     2109978.005
                  2471612.994 4972.497 ng
1432 2110007.994 2471590.065 4972.877 ng
```

```
1433 2109963.804
                   2471557.363 4971.163 ng
                   2471557.373 4971.144 ng
1434
      2109963.764
1435 2109941.558
                   2471574.412
                                 4970.96 ng
1436 2109924.174
                   2471588.025 4970.985 ng
1437 2109881.953
                   2471564.169 4969.794 ng
1438 2109890.691
                   2471542.682 4969.479 ng
                   2471525.328
                                4969.258 ng
1439 2109904.172
1440 2109858.102
                   2471496.653
                                4968.132 ng
1441 2109838.573
                   2471516.599
                                4968.107 ng
1442
       2109820,49
                   2471537.524 4968.177 ng
                   2471516.753
                                 4967.03 ng
1443 2109771.332
1444 2109778.169
                   2471488.269 4966.606 ng
                   2471466.237
                                4966.367 ng
1445 2109785.367
1446 2109717.932
                    2471420.43 4964.675 ng
1447 2109694.268
                   2471444.609
                                4964.673 ng
                   2471467.272
                                4964.785 ng
1448 2109675.827
1449 2109621.274
                   2471435.422
                                4963.723 ng
1450 2109630.946
                   2471407.172
                                4963.365 ng
1451 2109646.337
                   2471374.587
                                4963.161 ng
1452 2109574.324
                    2471340.48
                                4961.829 ng
1453 2109553.609
                   2471366.002
                                4961.884 ng
1454 2109539.129
                   2471387.199
                                4962.174 ng
                   2471407.869
                                4962.469 ng
1455 2109515.052
1456 2109442.555
                   2471378.126 4961.692 ng
1457 2109451.887
                   2471318.646
                                4961.366 ng
                   2471290.018
1458 2109458.928
                                4961.184 ng
1459 2109382.342
                   2471268.291
                                4961.101 ng
                   2471298.331
1460 2109356.427
                                4961.273 ng
1461 2109334.847
                   2471321.778
                                4961.443 ng
1462 2109267.553
                    2471291.54
                                 4961.58 ng
1463
     2109263.102
                   2471242.471 4961.246 ng
                                 4960.96 ng
1464 2109259.826
                   2471207.261
1465
     2109210.397
                   2471195.374 4961.628 ng
1466 2109214.197
                   2471222.511
                                4961.923 ng
1467
     2109218.048
                   2471244.108
                               4962.269 ng
1468 2107658.022
                   2470736.733 4880.308 ng
1469 2107670.219
                   2470706.525
                                4880.421 ng
1470
     2107690.349
                   2470668.906
                               4880.177 ng
1471
     2107705.541
                   2470626.784
                                4880.071 ng
1472 2107631.973
                   2470653.875 4880.507 ng
1473
                   2470619.574 4880.736 fenceline
       2107631.06
1474
     2107604.366
                   2470660.427 4880.485 + fenceline
1475
     2107556.673
                   2470667.271 4881.043 fenceline
1476
                   2470672.018 4881.199 fenceline
       2107521.65
1477
    2107497.304
                   2470698.789 4881.616 fenceline
1478
     2107456.888
                   2470744.029 4881.689 end fenceline
1479
     2107569.972
                   2470724.357 4880.464 ng
```

```
1480
       2107643.904 2470774.805 4880.003 ng
                                 4879.387 ng
 1481
       2107774.854 2470671.849
 1482
       2107823.221 2470719.806
                                 4880.687 ng
 1483
       2107777.251 2470726.157
                                 4880.794 ng
 1484
       2107734.732
                    2470739.649
                                  4879.33 ng
 1485
        2107708.77
                    2470760.126 4878.874 ng
 1486 2107819.195
                    2470840.211
                                 4880.811 ng
 1487
       2107880.817
                                 4880.616 ng
                    2470750.859
 1488
       2107949.784
                    2470706.568
                                 4880.508 ng
 1489 2102617.916
                    2464449.164
                                 4942.734 concrete
 1490
       2102619.052
                    2464453.294
                                 4942.689 concrete
       2105412.264 2468820.597
 1491
                                 4886.038 ng
 1492
       2105412.248
                   2468820.388
                                  4886.15 ng
 1493
      2105447.877
                   2469122.534
                                 4880.127 ng
1494
       2105543.898 2469173.651
                                4880.349 ng
1495
      2105545.405
                     2469187.53
                                4877.325 ng
1496
      2105545.231
                   2469193.408
                                  4877.21 ng
1497
      2105547.105
                   2469206.252 4879.964 ng
1498
        2105604.01
                    2469243.701
                                4880.311 ng
1499
      2105660.105
                     2469301.96 4879.744 ng
1500
      2105722.531
                   2469341.222 4879.773 ng
1501
      2105736.802
                     2469353.69 4880.725 ng
      2105748.566 2469365.432 4878.871 ng
1502
1503
      2105761.887
                   2469374.478 4879.257 ng
1504
       2105777.16
                   2469398.464 4880.478 ng
1505
      2105825.687
                   2469438.889 4880.002 ng
1506
      2105920.336
                   2469498.928 4880.514 ng
1507
      2105927.696
                   2469497.411 4880.474 ng
1508
      2106038.167
                   2469585.711 4880.946 ng
1509
      2106117.775
                   2469652.307 4879.971 ng
1510
      2106127.275
                   2469649.288 4881.613 ng
1511
       2106235.02
                   2469738.956
                                 4882.04 ng
1512
      2106257,967
                   2469759.962 4882.077 ng
                   2469865.786 4881.744 ng
1513
      2106394.257
1514
      2106489.476
                   2469942.927
                                4881.666 ng
1515
      2106599,218
                    2470021.17 4879.829 ng
1516
      2106605.117
                   2470023.437 4879.799 ng
1517
       2106643.64
                   2470051.919
                                4880.753 ng
1518
      2106708.006
                   2470109.477 4881.519 ng
1519
      2106759.361
                   2470155.381 4881.748 ng
1520
      2106775.106
                   2470170.048 4881.596 ng
1521
       2106782.48
                   2470183.063 4880.392 ng
1522
      2106795.979
                   2470210.361 4881.001 ng
1523
       2106859.31
                   2470222.849 4880.924 ng
1524
      2106918.639
                   2470278.406 4880.205 ng
1525
      2106927.229
                    2470281.35
                               4880.296 ng
1526
      2107186.868 2470473.265 4880.757 ng
```

```
1527 2107248.911 2470535.145 4880.041 ng
1528 2107226.712
                   2470563.632 4880.483 ng
1529 2107303,693
                   2470632.644
                                4880.23 ng
1530 2102630.831
                   2464439.873 4942.297 concrete
1531 2102634.708
                  2464455.401 4942.331 concrete
1532 2102619.273
                  2464452.391 4936.735 outlet
1533 2102618.482 2464449.635 4936.702 outlet
1534 2102644.174
                  2464452.156
                                 4942.1 gate
1535 2102647.468 2464451.015 4942.114 gate
                  2464444.624 4941.832 concrete
1536 2102653.479
1537 2102652,476 2464440,507 4941,878 concrete
1538 2102655.103 2464440.295 4937.865 concrete
1539 2102655.057
                   2464440.26 4938.046 concrete
1540 2102656.393 2464443.528 4937.981 concrete
1541 2102659.326
                  2464442.832 4938.085 concrete
1542 2102658.184
                  2464439.544 4938.216 concrete
1543
       2102658.17
                  2464439.119 4942.197 concrete
1544 2102659.119
                  2464443.266 4942.223 concrete
                  2464439.482 4936.292 concrete
1545 2102673.797
1546 2102674.117
                  2464438.896 4931.492 concrete
                  2464435.602 4931.313 concrete
1547
        2102673.9
1548 2102673.158 2464435.463 4936.422 concrete
1549 2102689.247
                  2464431.263 4936.167 concrete
1550 2102697.214
                  2464423.408 4936.241 concrete
1551 2102690.257
                  2464435.495 4936.238 concrete
1552
                  2464437.363 4936.252 concrete
       2102696.88
1553
        2102699.3
                  2464430.751 4933.655 gs
1554 2102701.121
                  2464416.687 4937.816 tob
1555 2102689.735
                  2464367.538 4938.685 gs
                  2464349.031 4936.808 gs
1556 2102740.795
1557 2102746.047
                  2464408.191 4936.648 top
1558 2102746.849
                  2464419.697 4932.898 inv
1559 2102765.211
                  2464413.296 4931.527 inv
1560 2102765.029
                  2464412.846 4935.587 concrete
1561 2102759.303
                  2464413.962 4935.291 concrete
                  2464403.768 4928.539 inv
1562 2102809,274
1563
      2102805.05
                   2464385.82 4934.888 top
1564 2102788.666 2464330.262 4934.781 gs
1565 2102865.163
                   2464308.11 4932.636 gs
1566 2102879.616 2464370.303 4932.459 top
1567
      2102888.56 2464380.972
                              4927.73 inv
1568 2102929.428
                   2464344.73 4927.794 inv
1569 2102929.413 2464334.557 4931.261 top
1570 2102885.391 2464290.877 4931.528 gs
1571 2102945.841 2464314.529 4927.201 gs
1572 2102938.748 2464312.186 4929.483 top
1573 2102889.788
                   2464292.85 4931.665 gs
```

```
2102879.974 2464218.499 4931.747 gs
 1574
 1575
       2102919.81 2464220.562 4931.218 top
 1576
     2102948.631 2464221.169 4925.583 inv
 1577
      2102947.164 2464221.658 4928.535 top
 1578
      2102949.742 2464146.963 4925.429 inv
 1579
                               4928.408 top
         2102942.9 2464143.937
1580 2102885.364 2464128.011 4931.889 gs
1581
      2102883.881
                    2464049.21
                                4930.98 gs
1582 2102921.534 2464042.136 4931.639 top
      2102943.254
                   2464038.211
                               4925.892 inv
1583
1584
       2102942.89
                   2463978.984
                               4925.969 inv
     2102931.075 2463973.683
                                4930.24 top
1585
1586
     2102891.943 2463964.083 4930.583 gs
      2102889.779 2463912.744
                               4932.174 gs
1587
1588
      2102941.687
                    2463909.92
                               4931.108 top
1589
      2102952.121 2463922.631 4925.723 inv
1590
      2102968.615 2463866.478 4925.869 inv
1591
       2102961.12 2463864.078 4929.492 top
1592
      2102912.413 2463841.438
                                4931.71 gs
1593
      2102927.399 2463769.566 4932.022 gs
1594
      2102993.765 2463768.421
                                4930.34 top
1595
      2103010.405
                  2463772.405 4925.182 inv
1596
      2103029.304 2463724.895
                                4925.49 inv
1597
      2103050.012
                  2463676.234 4924.653 inv
1598
       2103035.67
                  2463668.417 4930.036 top
                  2463636.518 4931.841 gs
1599
     2102973.807
1600
     1601
     2103068.149
                  2463579.316 4929.919 top
1602
     2103083.446 2463583.894 4925.065 inv
1603
     2103103.437
                  2463521.998 4924.719 inv
1604
     2103087.188
                  2463515.452 4929.939 top
     2103042.402 2463509.762 4930.933 gs
1605
1606
       2103040.02
                  2463435.493 4931.895 gs
                               4930.15 top
1607
       2103113.6
                  2463439.718
1608
       2103126.42
                  2463438.516 4925.218 inv
1609 2103141.641 2463387.279 4924.392 inv
1610 2103129.316
                  2463387.754 4928.702 top
     2103080.901
                  2463370.637 4930.528 gs
1611
                  2463288.845 4930.349 gs
1612
     2103091.408
1613 2103137.848
                  2463295.164 4929.631 top
1614
     2103150.869
                   2463297.77 4925.137 inv
1615
      2103158.01 2463242.499 4924.747 inv
1616 2103142.837
                   2463240.19 4930.124 top
1617
     2103105.415
                   2463220.94 4930.576 gs
1618
     2103105.817
                  2463147.579 4930.884 gs
1619
     2103111.331
                  2463122.595 4930.642 fence
                  2463125.542 4930.624 fence
1620
     2103132.957
```

```
1621 2103145.532
                    2463082.05 4930.767 fence
      2103155.325
                   2463144.427 4930.313 top
1622
1623 2103171.648
                   2463149.959 4924.357 inv
                   2463095.542 4924.385 inv
1624 2103176.688
1625 2103183.339
                   2463040.291 4924.482 inv
1626 2103165.695
                   2463040.047 4929.918 top
                   2463098.547 4930.083 top
1627 2103158.764
1628 2103170.327
                   2463010.726 4930.348 top
                   2463010.294 4930.603 fence
1629 2103165.496
                   2462941.505 4928.919 fence
1630 2103183.681
1631 2103194.363
                   2462957.342 4924.266 inv
1632 2103201.225
                   2462922.657 4924.006 inv
                   2462900.338 4928.356 fence
1633 2103197.919
1634 2103176.515
                    2462868.49 4929.937 fence
1635 2103163.235
                   2462847.145 4930.455 fence
1636 2103201.139
                   2462888.238 4928.424 top
1637 2103212.668
                   2462881.553 4924.249 inv
1638 2103235.732
                                 4923.84 inv
                   2462818.696
1639 2103224.312
                   2462806.542 4930.301 top
1640 2103183.144
                   2462791.583 4930.406 gs
1641 2103212,409
                   2462710.464
                                 4930.25 gs
1642 2103252.885
                   2462709.676
                               4927.954 top
                   2462709.085 4923.019 inv
1643 2103261.412
1644 2103273.761
                   2462658.313 4922.942 inv
1645 2103264.649
                    2462643.14 4927.495 top
1646 2103212,219
                   2462635.076
                                 4930.29 gs
1647 2103213.151
                   2462562.062 4931.208 gs
1648 2103278.599
                   2462564.898 4927.569 top
1649 2103287.789
                    2462568.38 4923.172 inv
1650 2103296.864
                                 4922.69 inv
                     2462526.2
1651 2103287.161
                   2462520.579 4928.118 top
1652 2103235.865
                   2462505.984 4931.168 gs
1653 2103244.833
                   2462409.898 4935.998 gs
1654
        2103303.9
                   2462420.343 4930.607 top
1655
     2103316.783
                   2462418.186
                                4922.91 inv
1656
       2103329.98
                    2462359.55 4922.751 inv
1657 2103338.953
                   2462302.157
                                 4922.85 inv
1658
     2103353.642
                   2462237.902 4922.666 inv
1659 2103340.984
                   2462234.457 4929.426 top
1660 2103324.534
                   2462293.877 4933.176 top
1661 2103311.343
                   2462361.766 4932.941 top
1662 2103264.933
                   2462337.331 4937.298 gs
                    2462309.82 4934.292 gs
1663 2103300.379
1664 2103322.285
                   2462274.331 4928.927 gs
                   2462273.389 4926.638 gs
1665 2103302.321
1666 2103278.195
                   2462311.628 4925.457 gs
1667 2103281.576
                   2462238.955 4926.419 gs
```

```
1668
      2103289.996 2462152.881
                                4927.67 gs
1669
      2103351.994 2462168.561 4927.915 top
1670 2103361.728 2462170.455 4922.476 inv
1671 2103358.991 2462122.259 4922.577 inv
1672 2103348.575 2462128.086 4926.288 top
1673 2103283.153 2462095.429 4925.778 fence
1674 2103297.437 2462025.521
                                4925.91 fence
1675 2103338.386 2462037.577 4925.872 top
1676 2103344.643 2462035.891 4922.641 inv
1677
       2103306.75 2461982.521 4926.427 fence
1678 2103338.519 2461976.125 4925.819 top
     2103346.844 2461980.666 4922.424 inv
1679
     2103358.566 2461941.926 4921.934 inv
1680
1681 2103347.693 2461933.719 4926.158 top
     2103319.437 2461921.388 4925.183 fence
1682
        2103326.7 2461885.844
                               4925.05 fence
1683
     2103372.708 2461885.212 4927.103 top
1684
     2103383.068 2461892.234 4921.583 inv
1685
1686 2103355.842
                   2461824.01 4924.547 gs
     2103400.721 2461790.867 4924.778 gs
1687
     2103412.693 2461849.994 4926.571 top
1688
1689 2103416.605 2461860.428 4922.138 inv
     2103441.976 2461841.341 4921.086 inv
1690
                   2461832.95 4919.293 inlet
1691 2103454.194
1692
     2103436.311 2461829.982 4926.164 top
     2103458.522 2461825.511 4925.645 top
1693
     2103460.085 2461846.033 4926.366 top
1694
     2103476.712 2461866.785 4925.829 gs
1695
1696 2103439.833 2461901.008 4924.028 gs
1697 2103421.659 2461876.472 4926.682 top
    2103446.674 2461854.772 4926.009 top
1698
1699
     2103439.236 2461849.755 4921.946 inv
1700 2103416,218 2461866,279 4921,869 inv
                  2461889.25 4921.295 inv
1701 2103388.565
1702 2103393.303 2461907.466 4927.192 top
      2103415.62 2461936.485 4925.103 gs
1703
     2103390.327
                  2461979.893
                                4925.6 gs
1704
                  2461971.161 4926.753 top
1705 2103364.887
                  2461968.581 4922.398 inv
1706
    2103356.963
1707
     2103346.445
                  2462012.156 4922.784 inv
1708 2103358.805
                  2462012.551 4926.767 top
                  2462025.769
                               4924.53 gs
1709
     2103391.227
                  2462062.009 4923.518 gs
1710
      2103405.65
1711 2103361.985
                   2462066.55 4926.399 top
                  2462068.083 4922.874 inv
1712
     2103350.663
1713 2103358.698 2462108.747 4922.314 inv
     2103367.374 2462106.445 4926.477 top
1714
```

```
1715
      2103400.973 2462102.066 4924.274 gs
 1716
      2103414.234
                   2462177.184
                               4925.545 gs
 1717
      2103373.739
                   2462183.184 4927.153 top
1718
      2103364.163 2462182.122 4922.958 inv
1719
      2103353.739 2462247.602
                                4923.01 inv
      1720
1721 2103406.182 2462254.251 4927.331 gs
1722 2103403.866 2462336.563 4926.402 gs
1723
      2103350.983 2462319.131 4928.047 top
1724
        2103341.7 2462317.263 4923.011 inv
1725
      2103334.558 2462363.331
                                4923.22 inv
       2103343.59 2462362.808 4928.083 top
1726
1727
      2103393.589 2462374.975
                               4926.318 gs
1728 2103388.424 2462420.087
                               4926.172 gs
      2103339.517 2462401.655
1729
                               4928.955 top
1730 2103326.155
                    2462401.83
                               4923.362 inv
1731 2103318.632
                     2462439.3 4922.942 inv
1732 2103336.836 2462443.404
                                4930.37 top
1733 2103381.114 2462447.824 4925.668 top
1734
      2103380.431
                    2462449.53 4925.753 gs
1735
      2103369.597
                  2462504.912
                               4925.361 gs
1736
      2103324.391 2462496.414
                               4929.628 top
1737
      2103312.805 2462489.964 4923.637 inv
1738
      2103301.431
                   2462529.55 4922.931 inv
1739
      2103316.822 2462532.696
                               4929.15 top
1740
       2103361.08 2462546.947 4923.382 gs
1741 2103352.993
                  2462617.405 4923.107 gs
1742 2103300.094
                  2462610.099 4928.156 top
1743
      2103288.487
                  2462610.706 4923.442 inv
1744
     2103280.484
                  2462649.899 4923.107 inv
1745
       2103294.83
                   2462654.77 4929.685 top
1746 2103341.216
                   2462668.79
                               4923.15 gs
1747
     2103325.766
                  2462725.235 4923.764 gs
1748
     2103281.792
                  2462716.492 4929.621 top
1749
     2103267.709
                  2462714.834 4923.726 inv
5000 2103310.834
                  2464876.873 4918.095 pp
5001 2103310.468
                  2464882.726 4917.412 edg rd
5002 2103314.208
                  2464899.101 4917.455 edg rd
5003 2103358.142
                  2464892.529 4915.865 edg rd
5004
      2103368.56 2464897.489
                               4915.08 edg rd
5005 2103376.414
                   2464911.74
                               4914.47 edg rd
5006 2103386.478 2464909.215 4914.349 edg rd
5007 2103386.095
                  2464894.132 4914.915 edg rd
5008 2103390.764
                  2464886.567 4915.053 edg rd
5009 2103437.093
                  2464878.558 4913.317 edg rd
5010 2103485.673
                  2464872.898
                              4912.041 edg rd
5011
     2103508.913
                  2464844.357 4912.571 pp
```

```
5012 2103507.179
                      2464825.612
                                   4912.029 gwa
  5013
        2103505.151
                      2464821.979
                                   4912.698 gwa
  5014
        2103505.427
                       2464819.21
                                   4912.627 gwa
  5015
        2103484.083
                      2464855.992
                                   4912.369 edg rd
  5016
        2103435.527
                      2464863.217
                                   4913.505 edg rd
  5017
        2103388.111
                     2464869.938
                                   4915.118 edg rd
 5018
       2103356.361
                     2464875.446
                                    4916.01 edg rd
 5019
       2103307.988
                     2464864.212
                                   4917.714 gwa
 5020
       2103306.495
                     2464860.714
                                   4918.116 gwa
 5021
      2103411.187
                     2464834.485
                                   4915.511 topo
 5022
                     2464841.641
       2103412.864
                                   4914.806 topo
 5023
       2103414.112
                     2464847,504
                                  4912.497 topo
 5024
         2103414.46
                     2464849.683
                                  4912.456 topo
 5025
       2103416.273
                     2464856.984
                                  4914.476 topo
 5026
       2103417.346
                     2464863.643
                                  4913.443 topo
 5027
       2103442.765
                     2464859.105
                                  4912.651 topo
 5028
        2103441.58
                     2464852.095
                                  4914.286 topo
 5029
       2103439.498
                     2464844.837
                                   4911.37 topo
 5030
       2103434.684
                      2464829.59
                                  4914.788 topo
 5031
       2103436.705
                     2464835.958
                                  4914.655 topo
 5032
       2103414.581
                     2464795.529
                                  4913.225 ir
       2103408.264
 5033
                      2464768.77
                                  4913.566 topo
 5034
         2103415.2
                     2464910.659 4913.306 topo
       2103427.453
 5035
                      2465109.25
                                  4912.991 topo
 5036
       2103425.714
                     2465109.259 4912.502 topo
 5037
       2103422.035
                    2465109.365
                                  4913.491 topo
 5038
       2103414.245
                    2465263.842
                                    4913.6 mwy
5039
      2103433.026
                    2465265.253 4912.569 topo
5040
      2103434.813
                    2465269.537
                                  4912.564 topo
5041
      2103500.973
                    2465398.858
                                  4911.181 topo
5042
      2103590.641
                    2465577.216 4910.145 topo
      2103642.923
5043
                     2465752.16 4911.044 smh
5044
      2103681.035
                     2465755.87
                                 4909.796 topo
5045
      2103771.238
                    2465932.096
                                 4907.818 topo
      2103447.713
5046
                    2465458.961
                                 4912.869 smh
5047
      2103371.785
                     2464754.02
                                 4915.479 smh
5048
                    2465931.957
      2103772.236
                                 4907.847 ng
5049
      2103861.036
                    2466111.637
                                 4906.279 ng
5050
      2103951.015
                    2466288.875
                                 4905.008 ng
5051
      2104041.941
                     2466467.72
                                 4904.104 ng
5052
       2104112.33
                    2466611.351
                                 4902.081 ng
5053
      2104220.453
                    2466828.965
                                 4900.526 ng
5054
      2104307.643
                   2467006.937
                                 4898.279 ng
5055
      2104389.078
                   2467131.992
                                 4896.073 ng
5056
      2104473.673
                   2467290.386
                                   4894.3 ng
5057
      2104544.186
                   2467447.043
                                 4893.258 ng
5058
        2104647.7
                   2467600.128
                                 4893.555 ng
```

```
2467684.068 4892.864 ng
5059 2104733.815
                   2467842.968
                                4893.612 ng
5060
      2104854.319
                                 4892.55 ng
5061
      2104920,472
                   2467920.219
                   2468073.279 4892.164 ng
5062
      2104989.679
                   2468238.153 4891.451 ng
5063 2105034.066
                                4887.169 ng
5064
      2105161.424
                   2468305.911
                   2468905.753
                                4888.314 ng
5065
      2105156.581
5066
      2105182.022
                   2468888.995
                                4887.632 ng
                   2466852.684 4902.863 ng
5067
      2104168.928
5068
      2104157.438
                   2466855.093 4900.572 ng
5069
      2104146.178
                   2466860.713
                                 4905.08 ng
                   2466867.112 4900.709 ng
5070 2104139.807
                   2467313.603
                                4925.526 ng
5071
     2103414.709
5072 2103594.904
                   2467252.611 4921.201 ng
                                4921.028 ng
5073 2103581.307
                   2467231.563
5074 2103611.557
                   2467226.206 4920.543 ng
5075
      2103642.309
                   2467214.134 4920.713 ng
      2103655.253
                   2467183.273 4920.305 ng
5076
      2103696.501
                   2467140.384
                                4919.443 ng
5077
5078
      2103759.667
                   2467159.986 4919.959 ng
5079
      2103768.918
                   2467142.895 4919.298 ng
5080
      2103823.325
                   2467117.884 4918.997 ng
5081
      2103811.923
                   2467086.147 4918.357 ng
5082
      2103980.398
                   2466981.626
                                 4913.45 ng
                                4916.114 ng
      2104048.916
                   2466938.834
5083
                   2466919.401
5084
      2104099.161
                                4915.705 ng
      2104117.613
                   2466951.313
                                4915.793 ng
5085
      2104115.941
                    2466908.76
                                 4905.65 ng
5086
                   2466901.593 4904.065 ng
5087
      2104126.833
      2104136.652
                   2466893.902 4899.055 ng
5088
5089
      2104140.064
                    2466901.61 4898.967 ng
5090
     2104122.947
                   2466921.857
                                4905.135 ng
                   2466895.083 4899.017 ng
5091 2104237.735
5092
      2105896.755
                   2468260.068
                                4883.169 ng
5093 2105146.248
                   2467802.422
                                4888.175 ng
                                4880.971 ir
5094
     2105147.037
                   2467797.145
5095
     2104865.561
                   2467833.924
                                4892.788 ng
5096
     2104866.299
                   2467833.023
                                 4892.87 ng
      2104866.299
                   2467833.023
                                 4892.87 ng
5097
5098
        2104227.9
                   2466888.038
                                4899.246 ng
5099 2104212.856
                   2466858.533
                                4899.678 ng
     2104212.381
                   2466906.563
                                4900.705 ng
5100
5101 2104201.034
                   2466919.945
                                4900.506 ng
5102 2104208.378
                   2466916.459
                                4902.538 ng
     2104194.327
                   2466939.519
                                 4904.33 ng
5103
      2104177.021
                    2466946.56
                                4898.963 ng
5104
5105 2104162.919
                   2466951.048
                                4899.095 ng
```

```
5106 2104152.365
                   2466957.983
                               4903.92 ng
 5107 2104143,109
                   2466961.186 4904.553 ng
 5108 2104149,719
                   2466923.527 4899.052 ng
 5109 2105055.073
                   2468365.165 4892.196 ng
 5110
       2105071.74
                   2468482.258 4892.232 ng
 5111 2105084.331
                   2468582.583 4891.131 ng
 5112 2105094.175
                   2468687.723 4891.353 ng
 5113 2105103.995
                   2468789,217 4891,214 ng
 5114
       2105122.51 2468909.298 4890.199 ng
 5115 2105239.687
                   2468927.439 4887.656 ng
5116 2105122.462 2468909.162 4890.161 ng
5117 2105161.488
                  2468903.828 4888.295 ng
5118 2105161.649 2468963.527 4888.407 ng
5119 2105182.795 2468957.714 4888.485 ng
5120 2105200.195
                  2468972.449 4883.142 ng
5121 2105257.529
                  2469007.171
                                4881.49 ng
5122 2105299.732 2469045.098
                                4880.55 ng
5123 2105354.864 2469115.733 4880.885 ng
5124 2105376.706 2469125.746 4880.153 ng
5125 2105426.372 2469150.791 4880.279 ng
5126 2105486.017 2469180.348 4880.467 ng
5127
        2105485.8 2469185.323 4876.485 ng
5128 2105515.334 2469204.856 4880.562 ng
5129 2105514,435
                   2469196.29 4877.187 ng
5130 2105584.318 2469268.822 4879.881 ng
5131 2105641.305 2469315.218 4879.961 ng
5132 2105691.638 2469351.754 4879.015 ng
5133
     2105718.067
                  2469372.109 4880.989 ng
5134 2105729.035 2469379.956
                               4878.96 ng
5135 2105752.656 2469403.439 4879.216 ng
5136
       2105802.3 2469433.723
                              4881.263 ng
5137 2105834.493 2469462.491 4879.945 ng
5138 2105872.293 2469492.735 4880.654 ng
5139 2105886.173
                   2469484.24
                                4879.22 ng
5140
     2105890.952
                    2469481.1 4880.997 ng
5141 2105898.608 2469499.527 4879.668 ng
5142
      2105891.31
                 2469505.545
                              4881.681 ng
5143 2105878.812
                   2469518.74 4879.992 ng
5144
     2105919.139 2469552.573 4880.031 ng
5145 2105944.767
                  2469552.902 4880.193 ng
5146 2105972.838 2469578.096 4880.994 ng
5147
     2106016.354
                   2469605.14 4880.783 ng
5148 2106045.755 2469633.962
                               4882.04 ng
5149 2106050.693 2469617.654 4882.298 ng
5150
     2106074.545
                  2469643.836 4879.857 ng
5151 2106098.201
                  2469675.286 4879.267 ng
     2106109.678 2469687.773 4879.631 ng
5152
```

```
5153
      2106121.431
                    2469687.269
                                 4881.514 ng
5154
      2106178.238
                    2469729.791
                                 4882.737 ng
      2106213.556
5155
                    2469766.073
                                 4882.294 ng
      2106244.731
5156
                    2469766.541
                                 4882.184 ng
5157
       2106313.65
                    2469837.505
                                 4881.431 ng
5158
      2106377.959
                    2469881.619
                                 4882.195 ng
       2106421.07
5159
                     2469932.11
                                 4882.134 ng
       2106504.72
                                 4880.861 ng
5160
                    2469984.824
      2106576.319
                    2470031.418
5161
                                 4880.736 ng
5162
      2106595.795
                    2470051.695
                                 4880.666 ng
5163
      2106603.147
                    2470054.855
                                 4879.738 ng
      2106609.462
                    2470057.107
5164
                                  4880.67 ng
                                 4881.539 ng
5165
      2106639.807
                    2470084.823
5166
       2106688.91
                    2470128.307
                                 4881.556 ng
                                 4881.195 ng
5167
      2106738.561
                     2470160.06
5168
      2106755.379
                    2470178.589
                                  4882.47 ng
      2106770.309
                    2470193.342
5169
                                 4880.505 ng
     2106790.164
5170
                    2470221.019
                                 4880.822 ng
5171
      2106794.471
                    2470226.787
                                 4879.094 ng
5172
      2106799.877
                    2470230.229
                                 4878.937 ng
      2106808.852
5173
                    2470233.902
                                 4881.319 ng
5174
      2106845.459
                    2470252.541
                                   4881.2 ng
5175
      2106913.128
                    2470308.888
                                 4880.551 ng
5176
      2106931.078
                    2470320.323
                                 4880.394 ng
5177
      2106949.996
                    2470335.291
                                 4881.231 ng
5178 2106984.107
                    2470378.983
                                 4880.912 ng
5179
      2107040.351
                    2470401.666
                                 4881.169 ng
      2107075.683
5180
                     2470423.57
                                 4880.506 ng
     2107123.301
5181
                    2470468.578
                                 4881.154 ng
      2107164.102
5182
                    2470500.884
                                 4881.594 ng
5183
      2107208.903
                      2470532.2
                                 4880.557 ng
      2107238.514
5184
                    2470563.159
                                4880.374 ng
5185
      2107277.749
                   2470584.001 4881.157 ng
5186
     2107297.622
                    2470632.54
                                 4880.466 ng
5187
      2107303.091
                   2470632.164
                                 4880.394 ng
                                 4880.238 ng
5188 2107300.694
                   2470599.179
5189 2107256.048
                   2470540.069
                                 4880.239 ng
                                 4880.963 ng
5190 2107337.954
                   2470564,123
5191 2107354.971
                   2470574.995
                                 4880.367 ng
5192 2107360.823
                   2470579.776
                                 4879.682 ng
5220 2110100.063
                   2471680.206
                                 4977.699 ng
5221 2110081.653
                   2471674.917
                                 4977.096 ng
5222 2110008.411
                   2471632.066
                                 4974.597 ng
5223 2110120.875
                   2471687.156
                                4984.108 ng
5224 2110110.397
                   2471685.529
                                 4980.747 ng
5225
     2109935.492
                   2471585.934
                                 4971.043 ng
5226 2109866.822
                   2471557.008
                                4969.191 ng
```

```
5227
       2109762.987 2471514.205
                                  4966.762 ng
 5228
       2109641.254
                     2471466.732
                                  4964.326 ng
 5229
       2109463,344
                      2471378.63
                                  4961.161 ng
 5230
       2109216.156
                     2471238.192
                                  4962.117 ng
 5231
       2109236.082
                     2471235,468
                                  4961.317 ng
 5232 2109228.735
                                  4961.092 ng
                     2471201.934
 5233
       2109211.169
                     2471200.344
                                  4961.598 ng
 5234
       2109190.842
                     2471241.698
                                  4963.579 ng
 5235
       2109181.528
                    2471244.247 4963.968 ng
 5236
       2109173.436
                    2471247.725
                                  4959.232 ng
 5237
       2109139.354
                    2471244.264
                                  4957.409 ng
         2109117.3
 5238
                    2471244.231 4953.412 ng
 5239
       2109104.397
                    2471241.101
                                 4952.543 ng
 5240
       2108995.616
                                 4950.376 ng
                    2471100.809
 5241
       2109063.096
                    2471153.195 4949.533 ng
 5242
                    2471160.916 4953.368 ng
       2109052.943
 5243
       2109063.551
                    2471165.868 4955.896 ng
 5244
       2109072.297
                    2471181.306 4955.937 ng
 5245
      2109063.746
                     2471179.22 4952.629 ng
 5246
      2109054.122
                    2471170.921 4950.775 ng
5247
       2109038.995
                    2471160.204 4948.308 ng
                    2471165.543 4946.664 ng
5248
      2109039.433
5249
      2109032.625
                    2471172.129 4941.879 ng
5250
                    2471164.053 4937.994 ng
      2109012.475
5251 2108992.728
                    2471159.264 4935.479 ng
5252
      2108992.649
                     2471171.39 4929.286 ng
5253
      2108990.371
                   2471174.558 4928.801 ng
      2108952.217
5254
                    2471174.693
                                  4922.82 ng
5255
      2108934.478
                     2471174.15 4917.877 ng
5256
                                4907.845 ng
      2108894.736
                   2471168.788
5257
                   2471172.692 4905.473 ng
      2108894.226
5258
      2108877.077
                   2471162.769
                                4902.419 ng
5259
      2108859.492
                                4898.632 ng
                   2471159.719
5260
      2108860.417
                   2471138.782
                                4896.939 ng
5261
      2108819.674
                   2471134.724
                                4892.076 ng
5262 2108779.358
                    2471123.02
                               4888.436 ng
5263
     2108782.063
                                4886.584 ng
                   2471128.078
5264
      2108753.904
                    2471109.71
                                4886.817 ng
5265
     2108687.653
                                4885.913 ng
                   2471086.316
5266
     2108681.337
                     2471091.3
                                4883.406 ng
5267
     2108678.686
                                4881.383 ng
                   2471088.625
     2108681.142
5268
                   2471086.961
                                4885.446 ng
5269
     2108675.595
                   2471079.112
                                4885.388 ng
5270 2108673.968
                   2471079.603
                                4882.233 ng
5271
     2108651.151
                   2471058.024
                                 4885.92 ng
5272
     2108649.257
                   2471063.393
                                4885.323 ng
5273
     2108648.618
                  2471065.273
                                4881.306 ng
```

```
5274
        2108627.92
                    2471047.032 4885.782 ng
5275
       2108623.221
                    2471044.492 4882.788 ng
5276
       2108635.527
                    2471031.254
                                4885.896 ng
5277
       2108638.098
                    2471022.664
                                 4885.562 ng
       2108638.813
5278
                    2471019.823
                                 4884.213 ng
       2108622.757
5279
                    2471010.024 4884.846 ng
5280
       2108623.565
                    2471005.283 4883.169 ng
        2108599.68
                    2471007.477 4886.056 ng
5281
5282
       2108606.088
                    2470999.474
                                 4883.048 ng
      2108596.775
                    2471013.489
                                 4886.244 ng
5283
       2108591.733
                     2471015.62 4883.978 ng
5284
                                  4885.19 ng
      2108590.518
5285
                    2471023.978
5286
      2108584.668
                    2471032.201 4885.272 ng
5287
      2108575.724
                    2471025.204
                                 4884.747 ng
5288
      2108565.605
                    2471017.129
                                 4883.933 ng
5289
      2108572.263
                    2471007.303 4882.749 ng
5290
      2108570.354
                    2470993.298
                                  4882.73 ng
5291
      2108551.623
                    2471002.953 4882.658 ng
5292
      2108609.785
                    2471036.914 4884.158 ng
5293
      2108718.449
                    2471126.492
                                  4885.71 ng
                    2471135.947 4887.058 ng
      2108716.972
5294
5295
      2102698.391
                    2464437.532
                                 4935.167 ng
      2102703.605
                    2464460.538 4937.279 ng
5296
5297
      2102707.215
                    2464484.485 4936.777 ng
5298
         2102726.7
                    2464478.029 4936.591 ng
      2102725.327
                    2464454.285 4936.262 ng
5299
5300
      2102721.025
                    2464428.198 4934.781 ng
5301
       2102720.62
                    2464426.353 4933.847 ng
5302
      2102741.772
                    2464421.967 4932.811 ng
      2102742.495
                    2464424.248 4934.038 ng
5303
5304
      2102742.675
                    2464427.722 4935.348 ng
      2102748.227
                    2464450.709
5305
                                  4935.68 ng
5306
      2102774.316
                    2464454.152 4935.471 ng
5307
      2102773.948
                    2464438.183 4934.878 ng
5308
       2102771.28
                    2464416.231
                                  4933.15 ng
5309
       2102795.92
                    2464420.986 4933.799 ng
      2102799.994
5310
                     2464438.12 4934.333 ng
5311
      2102804.588
                   2464452.141 4934.824 ng
5312
      2102827.868
                    2464445.901
                                  4934.42 ng
5313
      2102825.247
                    2464431.496 4934.178 ng
      2102822.871
                   2464417.077 4934.218 ng
5314
      2102837.237
                                4931.704 ng
5315
                   2464410.567
5316
       2102837.01
                    2464407.708
                                4930.302 ng
5317
        2102835.9
                                   4929.5 ng
                   2464402.918
5318
      2102835.524
                   2464401.415
                                4928.114 ng
5319
      2102828.014
                   2464403.424
                                4928.396 ng
5320
      2102821.834
                   2464404.178
                                4928.286 ng
```

```
5321 2102822.149 2464404.938 4929.736 ng
 5322 2102815.536 2464404.868
                                4928.478 ng
 5323 2102814.374 2464406.482
                                 4929.58 ng
 5324 2102808.316
                   2464408.485 4928.594 ng
 5325 2102809.001
                   2464409.615
                                4929.768 ng
 5326 2102803.333 2464409.768
                                4928.732 ng
5327 2102803.339
                   2464412.086 4929.489 ng
 5328 2102800.665
                   2464409.532
                                4928.411 ng
5329 2102842.669
                   2464398.476 4928.382 ng
5330 2102855.205
                   2464395.255
                                  4928.1 ng
5331 2102856.049
                   2464396.646 4929.175 ng
5332
      2102859.229
                   2464393.585 4928.108 ng
5333
      2102860.046
                   2464395.048 4929.292 ng
5334
      2102863.352
                   2464392.614 4928.238 ng
5335
      2102863.987
                   2464394.232 4929.305 ng
5336 2102866.117
                   2464393.096 4929.083 ng
5337 2102865.527
                   2464391.886 4927.962 ng
5338 2102865.785
                   2464399.238 4929.705 ng
5339
       2102857.17
                   2464401.577 4929.754 ng
5340 2102844.597
                   2464405.243 4930.359 ng
5341 2102835.095
                   2464406.843 4929.845 ng
                                 4935.09 ng
5342 2102838.224
                   2464418.658
5343 2102858.177
                   2464411.029 4934.798 ng
5344
      2102858.723
                   2464413.074 4935.491 ng
5345 2102862.873
                   2464428.511 4933.933 ng
5346
       2102866.75
                   2464440.122 4933.741 ng
5347 2102891.444
                   2464433.864
                                  4932.8 ng
5348
      2102890.003
                   2464421.104 4933.281 ng
5349
       2102886.75
                   2464406.326 4933.904 ng
5350 2102885.804
                                4934.59 ng
                   2464403.146
5351 2102884.553
                  2464400.087 4932.359 ng
5352 2102890.916
                  2464382.576
                                4927.47 ng
5353 2102891.417
                  2464383.712 4928.609 ng
5354
     2102895.498
                  2464389.475 4929.556 ng
5355
     2102896.093
                  2464379.855 4927.931 ng
5356 2102896.953
                  2464381.605 4929.127 ng
5357
     2102900.739
                      2464388 4929.675 ng
5358
     2102909.436
                  2464383.024 4929.966 ng
5359
     2102906.545
                  2464376.357 4929.164 ng
5360
     2102906.066
                   2464375.05 4927.988 ng
5361 2102910.708
                  2464371.947 4928.168 ng
5362
     2102911.458
                  2464373.196 4929.128 ng
     2102915.177
5363
                  2464370.885 4928.612 ng
5364
     2102914.039
                  2464369.574 4928.381 ng
5365
     2102916.388
                  2464372.488 4928.932 ng
5366
     2102919.487
                  2464367.509 4928.499 ng
5367
     2102918.437
                  2464366.055 4928.377 ng
```

```
5368 2102922.795
                   2464368.807
                                4928.926 ng
                                4928.536 ng
5369
      2102927.689
                   2464357.644
                   2464359.838 4929.444 ng
5370
      2102930.639
5371 2102932.341
                     2464360.29
                                4929,909 ng
5372
     2102933.901
                   2464362.228
                                4930,602 ng
5373 2102936.168
                     2464365.04
                                4931.848 ng
5374
      2102929.284
                   2464369.814
                                  4930.74 ng
5375 2102932.208
                   2464374.295
                                4932.263 ng
5376 2102914.232
                     2464386.15
                                  4932.17 ng
5377 2102915.435
                   2464386.994 4932.803 ng
                                  4932.53 ng
5378 2102916.845
                   2464389.532
5379
       2102929.26
                   2464409.682
                                  4932.25 ng
                    2464426.59 4930.787 ng
5380 2102934.248
5381 2102954.442
                   2464388.171
                                4930.735 ng
5382 2102937.204
                   2464370.605
                                4931.445 ng
5383
      2102934.284
                   2464367.674
                                4931.668 ng
                   2464364.966 4930.396 ng
5384
      2102931.339
5385
      2102930.698
                   2464353.655
                                4928.702 ng
5386 2102933.655
                   2464355.777
                                4929.879 ng
5387
      2102940.768
                   2464358.158
                                4931.786 ng
                                4929.874 ng
5388 2102973.514
                   2464358.339
5389
      2102978.882
                   2464362.085
                                4928.305 ng
5390 2102993.516
                   2464375.272
                                4927.932 ng
                                4927.833 ng
5391 2102993.944
                   2464337.717
5392 2102987.512
                   2464335.287
                                4928.536 ng
                                4930.028 ng
5393 2102981.423
                   2464332.204
5394
     2102961.849
                   2464320.622
                                4929.926 ng
5395 2102958.459
                   2464320.195
                                4931.461 ng
5396
       2102955.46
                   2464319.545
                                4930.121 ng
5397 2102949.721
                   2464316.841
                                4928.866 ng
5398
      2102948.996
                   2464316.824
                                4927.829 ng
5399 2102988.949
                   2464282.894
                                4928.758 ng
5400
      2102968.123
                   2464279.227
                                 4929.33 ng
5401 2102965.419
                                4930.487 ng
                   2464278.145
5402 2102961.642
                   2464277.474
                                4928.924 ng
5403
      2102955.828
                    2464277.63
                                4928.525 ng
5404
      2102953.667
                   2464293.143
                                4928.969 ng
5405
        2102952.1
                   2464293.043
                                 4926.83 ng
                                4926.368 ng
5406
     2102953.403
                   2464281.766
5407
      2102955.701
                                4928.463 ng
                   2464281.411
5408
       2102990.09
                   2464228.191
                                4929.157 ng
5409 2102966.545
                                4929.761 ng
                   2464226.016
5410
      2102963.486
                   2464225.799
                                4930.519 ng
5411
     2102960.499
                   2464226.063
                                4929.322 ng
5412
      2102953.624
                   2464225.435
                                 4928.42 ng
5413
      2102951.719
                   2464225.408
                                4925.902 ng
                   2464171.829
5414 2102988.632
                                4928.475 ng
```

```
5415 2102969.813
                    2464168.05 4929.329 ng
 5416
      2102967.485
                  2464167.696 4930.302 ng
 5417
      2102963.958
                   2464168.294
                                4929.099 ng
 5418 2102959.147
                   2464166.638 4927.183 ng
 5419
       2102958.24
                   2464167.421 4926.352 ng
 5420 2102983.744
                   2464087.679 4928.544 ng
 5421 2102967.417
                   2464086.424 4929.234 ng
 5422 2102963.156
                   2464085.271 4930.191 ng
 5423
       2102959.38
                   2464085.585 4928.835 ng
 5424 2102956.579
                    2464085.24
                                 4927.59 ng
5425
      2102954.642
                   2464083.861 4926.253 ng
5426 2102981.539
                   2463994.516 4928.286 ng
5427
      2102965.712
                   2463985.048 4928.988 ng
5428
       2102961.83
                   2463983.654 4929.866 ng
5429
      2102957.954
                   2463982.976 4928.283 ng
5430
       2102955.16
                   2463982.695 4926.982 ng
5431 2103003.241
                   2463909.125 4928.502 ng
5432 2102981.697
                   2463899.824 4928.643 ng
5433 2102978.601
                    2463897.97 4929.063 ng
5434 2102975.144
                  2463896.476
                                4928.23 ng
5435 2102972.456
                   2463895.555 4926.511 ng
5436 2103046.783
                   2463795.478 4928.836 ng
5437 2103024.066
                   2463784.898 4928.514 ng
5438 2103021.219
                  2463783.714 4928.908 ng
5439 2103020.005
                   2463783.73 4928.742 ng
5440 2103018.671
                  2463783.061 4927.592 ng
5441 2103017.644
                  2463782.585 4926.817 ng
5442 2103038.655
                  2463730.575 4926.253 ng
5443
     2103041.528
                  2463731.496 4928.331 ng
                  2463732.616 4928.438 ng
5444
     2103043.897
5445
     2103070.295
                  2463741.127 4928.579 ng
5446
        2103096.2 2463668.141 4927.962 ng
5447 2103068.683
                   2463665.41 4928.167 ng
     5448
5449 2103122.844
                   2463593.79 4927.849 ng
5450 2103094.812
                                4927.87 ng
                  2463589.196
5451 2103093.015
                  2463584.713 4925.671 ng
5452 2103096.073
                   2463587.58 4927.962 ng
5453
      2103149.36
                  2463514.549
                                 4928.1 ng
5454 2103121.776
                  2463507.342
                              4927.995 ng
5455
      2103117.59
                  2463505.995
                              4925.753 ng
5456 2103134.318
                  2463502.198
                              4928.755 ng
5457 2103133.624
                   2463501.78
                              4930.094 ng
5458 2103130.047
                  2463500.248
                              4930.469 ng
5459 2103128.511
                 2463498.675
                               4929.27 ng
5460
     2103129.229
                   2463467.15 4925.675 ng
5461
      2103132.56
                   2463467.27
                              4927.958 ng
```

```
5462
       2103137.57
                   2463467.867
                                4928.589 ng
5463
      2103146.259
                     2463433.9 4928.851 ng
5464
      2103142.347
                   2463433.883 4927.858 ng
5465
       2103134.83
                   2463432.903 4924.718 ng
5466 2103184.955
                   2463369.202 4928.042 ng
5467
      2103168.314
                   2463367.925
                                4928.671 ng
5468 2103165.743
                   2463367.344 4929.959 ng
5469
     2103162.968
                   2463367.023 4929.806 ng
5470
       2103160.83
                   2463367.567 4928.625 ng
5471 2103197.491
                   2463271.101
                                 4927.66 ng
5472 2103181.805
                   2463264.761 4927.684 ng
5473 2103178.319
                   2463263.703 4929.527 ng
5474 2103173.719
                   2463262.463 4929.508 ng
5475 2103172.516
                   2463262.011 4928.327 ng
5476
       2103168.81
                   2463261.049 4928.201 ng
5477
       2103166.66
                   2463259.703 4926.355 ng
5478 2103165.184
                   2463258.527 4925.505 ng
5479 2103224.489
                   2463068.511
                                 4928.19 ng
5480
     2103203.663
                   2463061.302 4928.783 ng
5481 2103200.407
                   2463059.931 4930.141 ng
5482 2103197.715
                   2463059.821 4928.465 ng
5483 2103193.922
                   2463056.506 4927.413 ng
                   2463055.788 4926.187 ng
5484 2103191.738
5485 2103256.036
                   2462922.186 4925.856 ng
5486 2103225.593
                   2462929.146 4927.741 ng
5487
      2103222.555
                   2462926.716 4929.535 ng
5488
       2103219.81
                   2462925.676 4929.123 ng
                   2462925.015 4928.123 ng
5489 2103217.913
5490 2103207.557
                   2462920.638 4926.463 ng
5491 2103205.884
                   2462920.943
                                 4924.61 ng
5492
       2103206.21
                    2462919.05 4927.055 ng
5493 2103222.504
                   2462910.275 4928.215 ng
5494
      2103222.879
                   2462910.726 4929.282 ng
5495 2103225.257
                   2462911.276 4928.932 ng
                   2462911.923 4928.268 ng
5496 2103226.648
5497 2103256.026
                   2462923.212 4925.881 ng
5498 2103212.882
                   2462906.518
                               4927.981 ng
5499
          2103210
                   2462904.392 4926.984 ng
5500 2103212.709
                   2462902.195 4926.362 ng
5501 2103211.452
                   2462900.647
                               4923.798 ng
5502 2103217.985
                   2462900.489
                               4927.075 ng
5503 2103230.558
                   2462892.283 4928.164 ng
5504
       2103231.35
                   2462892.148 4929.534 ng
5505 2103233.173
                   2462893.066 4929.313 ng
5506 2103238.698
                   2462894.848
                               4927.754 ng
5507 2103262,349
                   2462894.874
                               4926.759 ng
5508 2103305.899
                   2462777.953 4923.777 ng
```

5509	2103292.295	2462775.313	4927.285 ng	
5510	2103272.05	2462780.051	4928.202 ng	
5511	2103268.55	2462777.234	4927.914 ng	
5512	2103259.647	2462773.294	4923.863 ng	

APPENDIX D - SOIL LOGS

APPENDIX D - SOIL LOGS

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Helium GeoTech # 1				Date:(07/31/2015		
Inspector: Gary Jordan				Contractor: SJ	RDWUI		
Work Type (check all that apply) Pipeline							
Labor: SJR	DWUI						
Safety Observation: x Adequate							
Station		Depth	Soil Texture	Measured	Comment		
N36.73666* W108.20278*							
	1'		Loamy Sand w/ gravel layer		.4' thick gravel and cobble layer		
	2'		Coarse Sand w/ gravel layer		.4' thick gravel layer		
	3,		Coarse sand w/ gravel layer		.3 thick gravel layer		
	4'		Coarse sand		Water table		
	5'		Coarse loamy sand w/ stones		Mostly sand with some cobble and a few stones		
	6'		Coarse loamy sand with so cobbles and a few stones				
Work Completed: Dig 1 hole with backhoe and refill at completion of job. The gate to the South side of river was locked							
Comments:				San Juan River	on the pipeline route and		
=	Investigate soil texture.						

Surface to 2'

6' depth

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Heliun	n #13		Date:20150615			
nspector: _	Gary Jordan		Contractor:			
Work Type (check all that ap	oply)				
Pipeline	☐ Earthwork	☐ Electrical	☐ Mechanical x	Other:		
Location:	N36.78197* W	108.70232*				
Labor:						
Safety Obse	rvation:			0		
T Adequate	Needs Ir	mprovement	explain			
Measureme	nts:		expiairi			
Station	Location	Design	Measured	Comment		
1'				Clay		
2'				Clay		
3'				Silty clay		
4'				Silty clay		
5'				Silty clay		
		14.		,		
Moule Comm	latadı			0		
Work Comp	meted.					
Comments:	ñ					
Pictures:	The top end of th	e soil samples	in the photo is the de	ep end of the sample.		

Click here to enter text.

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Heliu	m #15		Date: 06/15/2015		
nspector:	Gary Jordan		Contracto	or:	
Work Type	(check all that a	apply)			
Pipeline	Earthwork	☐ Electrical	Mechanica	l x Other:	
Location:	N36.78099* \	W108.70545*			
Labor:					
Safety Obs					
ຕັAdequate Measureme	e Needs	Improvement	explain		
Station	Location	Design	Measured	Comment	
1'				Clay	
2'				Clay	
3'				Clay Loam	
4'				Clay loam	
5'				Clay loam	
Work Com	pleted:				
Comments	S: ,				
Pictures:	The top end of	the soil samples	s in the photo is	the deep end of the samples.	

Click here to enter text.

Click here to enter text.

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Heliur	n #17		Date: 06/15/2015		
Inspector: _	Gary Jordan		Contracto	or:	
Work Type (check all that a	pply)			
F Pipeline	☐ Earthwork	☐ Electrical	☐ Mechanica	d x Other:	
Location:	N36.77955* V	V108.70835*			
Labor:					
Safety Obse					
Measureme	□ Needs I	mprovement	explain		
Station	Location	Design	Measured	Comment	
1'				Clay	
2'				Clay	
3"				Clay	
4'				Silty clay loam w/ some gravel up to 1".	
5'		>		Sandy clay loam w/ some gravel up to 1".	
		36			
Work Comp	oleted:				
Comments	:				
Pictures:	The top end of the	ne soil samples	in the photo is	the deep end of samples.	

Click here to enter text.

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Helium	n #21 soil texture		Date: _06/14/2015		
Inspector:	Gary Jordan		Contractor:	L.	
• • •	check all that ap 「Earthwork 「		☐ Mechanical x	Other:	
Location:	N36.77765* W	108.71289*			
Labor:					
Safety Obse Adequate Measurement	☐ Needs In	nprovement	explain		
Station	Location	Design	Measured	Comment	
1'				Clay Loam	
2'				Silty clay loam	
3'				Silty clay loam	
4'				Clay	
5'				Clay loam	
	oleted:				
Comments:					
Pictures: _	The top end of th	e soil samples	in the photo is the de	ep end of the samples.	

Click here to enter text.

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Heliur	m # 24		Date:	06/14/2015
Inspector: _	Gary Jordan		Contractor:	
	(check all that a	apply) 「Electrical		Other:
•	N36.77669*			
Labor:				
Safety Obse	ervation:			
T Adequate	e 🗀 Needs	Improvement		
Measureme	ents:		explain	
Station	Location	Design	Measured	Comment
1'				Clay loam
2'				Clay loam
3'				Sandy loam
4'				Sandy loam
5'				Sandy clay loam
		Ψ.		
Work Com	pleted:			
Comments	:			
Pictures:	Top end of sam	ples in the photo	is the deeper end of	f samples.

Click here to enter text.

Click here to enter text.

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Heliu	m #27			Date: 06/14/2015		
nspector: Gary Jordan			Col	Contractor:		
	(check all tha		cal □ Mec	hanical x Other:		
Location:	N36.77359	* W108.7145	54*			
Labor:	1 1			,		
Safety Obs	ervation:					
Adequate Adequate	e 🗆 Nee	ds Improvem	ent <u>explair</u>	1		
Measureme	ents:		ехріан	1		
Station	Location	Design	Measured	Comment		
1'				Clay loam		
2'				Loam w/ a few gravel up to 1.25"		
3'				Loam		
1'				Clay loam		
5'				Sandy clay loam		
Work Com	<u>-</u>		U U			
Pictures:	The top end of the soil samples in the photo is the deep end of the samples.					

Click here to enter text.

Click here to enter text.

www.kelbli.com

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Helium #29			Date:	06/14/2015	
Inspector: Gary Jordan		_	Contractor:		
Work Type (check all that ap	ply)			
Pipeline	☐ Earthwork 「	T Electrical	☐ Mechanical x	Other:	
Location:	N36.77239* W	108.71147*			
Labor:					
Safety Obse	ervation:				
T Adequate	☐ Needs In	nprovement	explain		
Measureme	nts:		ехріаін		
Station	Location	Design	Measured	Comment	
1'				Sandy loam	
2'				Sandy clay loam	
3'				Clay loam	
4'				Sandy loam	
5'				Sandy loam	
		-			
	L				
Work Comp	oleted:				
Comments:	-				
Pictures: _	The top end of the	e soil samples in	the photo is the de	ep end of the samples.	

Click here to enter text.

Click here to enter text.

www.kelbli.com

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

INSPECTION SHEET

Job: Helium #33		Date:06/14/2015		
Inspector:	Gary Jordan		Contractor:	
	check all that ap			
Pipeline	Earthwork	Electrical		Other:
Location:	N36.77058* W	/108.70532*		
Labor:				
Safety Obse				
-	☐ Needs I	mprovement		
-			explain	
Measurement Station	nts:	Design	Measured	Comment
1'				Silty clay loam
2'				Silty clay loam
3'				Silty loam
4'				Silty clay loam
5'				Silty loam
			-	
Work Comp	oleted:			
Comments:				
			noto is the deep end c	

Click here to enter text.

Click here to enter text.

APPENDIX E - HELIUM SIPHON PREFERRED ROUTE SELECTION

www.kelbli.com •

Phone 435.753.5651•

Fax 435.753.6139 •

78 East Center, Logan, Utah 84321

Memorandum

To:

Rudy Keedah, Bureau of Indian Affairs

David Tallman, Navajo Nation Department of Water Resources Marlin Saggboy, Navajo Nation Department of Water Resources

From: Mike Isaacson, Keller-Bliesner Engineering, LLC

Date: April 14, 2016

RE: Selection of preferred route for Helium Siphon

On April 13, 2016, two route options for the replacement of Helium Siphon were presented to decision makers in a meeting held in Gallup, NM at 12PM. The review presentation is enclosed The following were in attendance either in person or via teleconferencing:

Name	Organization	Attendance
Pearl Chamberlin	BIA	In person
Rudy Keedah	BIA	In person
Najam Tariq	NNDWR	In person
David Tallman	NNDWR	In person
Marlin Saggboy	NNDWR	Via Teleconference
Michele Tsosie	NNDWR	Via Teleconference
Mike Isaacson	Keller-Blienser Engineering	In person

The two route options presented are as follows:

- 1. Keep existing route (white line on presentation). Replace the first 5,800 ft of pipeline through the saturated areas. Use the existing pipe to slip-line a new, smaller pipe in the developed areas south of the saturated area. Discharge into Helium Lateral at the existing location.
- 2. Abandon pipe in developed areas and construct the pipe in a new route next to the farm land (Yellow line on presentation). This option replaces the pipe until it crosses the river and then routes to the farm land presently served by Helium Lateral. The discharge point will be next to the Dine College demonstration farm.

A third option was derived and discussed during the meeting that routed the pipe through the developed areas via existing roads rather than slip-lining new pipe in the existing pipe that is located directly underneath existing structures. All three of these options were discussed and summarized in the matrix below.

Option 2 was selected primarily because it fits better with current and future land uses. The thought was that this pipeline would better serve the irrigated land if it is next to the land. Turnouts may be placed along the pipe to serve adjacent fields with pressurized irrigation water.

Marlin Saggboy did suggest that the route be modified to avoid impacting more riparian lands. His suggestion was to utilize the existing pipe route until the pipeline approaches the bluffs on the south side of the river. The pipeline will then route westward to the new farmland. The review team all agreed with this modification.

Decision Matrix for Helium Siphon Route

Decision Matrix for Helium Siphon Route Issue Option 1 Option 2 Option 3						
Description	Keep existing pipe in developed areas and slip-line new, smaller	Abandon existing pipe through developed areas and construct new route along the	Re-route the pipeline through the developed areas so that it doesn't lie			
N=0.4	pipe	farmland	directly underneath existing structures This will trigger at			
NEPA Compliance	This will trigger at least an EA due to having an effect on public safety and impacting low-income residents	This will trigger at least an EA due to the route change. There also may be a cultural resource site along the route that needs to be monitored during construction	least an EA due to the route change.			
Right-of-Way	The option will have to resolve the conflict between developed infrastructure directly on-top of the house and other home site leases	This option will require obtaining new right-of-way. We have verbal agreements from impacted farm permit holders and the chapter	This option will require obtaining new right-of-way. We have not researched this.			
CCSD School Irrigation	No change to current configuration	This option requires pressurizing Helium Siphon and constructing a small pipeline to the school.	No change to current configuration			
Current land development	Recent land development has now separated the pipe from the land	This option will place the pipe adjacent to the command area of the pipeline	Recent land development has now separated the pipe from the land			
Future Land Uses	Shiprock Chapter is considering a road where the current lateral is meaning that it would have to be piped and move the discharge.	No impact	Shiprock Chapter is considering a road where the current lateral is meaning that it would have to be piped and move the discharge.			
Costs	\$1.5M	\$1.5M	Not determined			

The consensus of the group w	as to go with Option 2.	
David Tallman,Civil Engineer	Marlin Saggboy, Supervisor	Michael Isaacson, PE
Najam Tariq, TCOB Director		Rudy Keedah, BIA-AOTR

RESOLUTION OF THE SHIPROCK CHAPTER

M

SHIPROCK, NAVAJO NATION

SUPPORTING THE REPLACEMENT OF THE HELIUM SIPHON AS A PART OF THE SAN JUAN RIVER NAVAJO IRRIGATION REHABILITATION PROJECT

WHEREAS:

- 1. The Shiprock Chapter of the Navajo Nation acts on this resolution pursuant to the authority conferred on the Chapter through Navajo Nation Code Title 26, Chapter 1. Section B. Purpose, which states, "Through adoption of this Act, the Navajo Nation Council delegates to Chapters governmental authority with respect to local matters consistent with Navajo Law, including custom and tradition; and the inclusivity provided by the Diné Fundamental Law, in that "it is entirely appropriate for the government itself to openly observe these fundamental laws", and
- 2. The Navajo Nation Department of Water Resources Technical, Construction and Operations Branch is responsible for the operation and maintenance of the Hogback Irrigation Canal System, and
- 3. The 40-inch steel Helium Siphon was constructed to provide irrigation water to 951 acres of permitted farmland located on the south side of the San Juan River, the siphon failed in 2000 and has not been repaired, and
- 4. The Shiprock Irrigation Department conducted an engineering assessment of the siphon in 2003 and concluded that the steel siphon pipe had exceeded its life expectancy and required replacement, and
- 5. The Navajo Nation Department of Water Resources received a \$15.4M authorization from Congress to rehabilitate the Hogback-Gad ii ahi Irrigation Project, and
- 6. The Navajo Nation Department of Water Resources contracted with Keller-Bliesner Engineering, LLC to complete a design for replacement of the Helium Siphon, and
- 7. The Keller-Bliesner Engineering firm has completed a design which was presented to the Shiprock Chapter membership on May 11, 2016.

NOW, THEREFORE, BE IT RESOLVED THAT:

The Shiprock Chapter membership hereby supports the replacement of the Helium Siphon as a part of the San Juan River Navajo Irrigation Rehabilitation Project.

Motioned by: Charley P. Joe

Seconded by: Bertha Etcitty

CERTIFICATION

We hereby certify that the foregoing resolution was presented and considered at a duly called Chapter meeting at which a quorum was present and that the same was approved by a vote of $\underline{29}$ in favor, $\underline{-0}$ opposed and $\underline{8}$ abstentions on this $\underline{15}^{th}$ day of \underline{May} , $\underline{2016}$.

Duane H. Yazzie, President

Dr. J. Kaibah Begay, Secretary/Treasurer

Tommie Vazzie, Vice President

Tom Chee, Council Delegate

APPENDIX F - HELIUM SIPHON DESIGN REVIEW MEMO

Helium Siphon Review February 25, 2016 Agenda

1	. Ir	itrodi	uctior	n and Objective		
2	. E	xistin	g Situ	ation		
3	. А	lterna	atives	i		
	a) Ro	oute			
	b) Pip	pe Ma	aterial		
	c)) Riv	ver Cr	ossing		
4	. S	electi	ion			
	a) Ro	oute			Alternative Selected
		i)		Keep existing alig	gnment.	
		ii)		Modified Route.		
	b) Pip	ре Ма	aterial		Alternative Selected
		i)		Steel		
		ii)		HDPE		
	c)	Riv	ver Cr	ossing		Alternative Selected
		i)		Bore Not feasik	ole because of cobble	
		ii)		Open Cut		
		iii))	Slip line existing	pipe	
5	. D	esign	Cond	cepts		
6	. N	ext S	teps			
Selec	tion	and	Conc	urrence:		
Shipr	ock I	lrriga [.]	tion S	Supervisor:		
					Marlin Saggboy, Shiprock Irrigat	tion
NND	WR 1	СОВ	Engir	neer:		
					David Tallman, NNDWR-TCOB	
BIA A	ATOF	₹:		-		
					Rudy Keedah, BIA-ATOR	
Engin	eer	of Re	cord:	-		
					Michael Isaacson, Keller-Bliesne	er Engineering, LLC
			_			
Nava	jo Na	ation	Conc	urrence		
					Najam Tariq, NNDWR – TCOB D	irector

www.kelbli.com

Phone 435.753.5651

Fax 435.753.6139

78 East Center, Logan, Utah 84321

To:

David Tallman, NNDWR

From: Mike Isaacson, Keller-Bliesner Engineering, LLC

Date: April 12, 2016

RE: Helium Siphon, May 9, 2016 Design Review Minutes

Attendance:

David Tallman, NNDWR
Marlin Saggboy, NNDWR
Michele Tsosie, NNDWR
Rudy Keedah, BIA
Mike Isaacson, Keller-Blienser Engineering, LLC

- 1. Introductions were made and the meeting convened about 11:00 AM in Shiprock Irrigation.
- 2. Review of route selection completed on April 14th. Meeting minutes approving of the route selection was crafted and signed by the group. However, these minutes were lost and so they were reprinted out by Michele Tsosie and resigned by the group.
- 3. The new route was shown and agreed upon.
- 4. Discussion of Helium lateral earthen canal and flume capacity. Marlin Saggboy said that the siphon probably can wash out the canal. Safety's need to be implemented to the siphon design to ensure that the canal is not washed out.
- 5. Discussion of the current turnout at Hogback Canal for Helium Siphon. This turnout is much too large for the flow. Shiprock Irrigation years ago placed limits on the turnout to prevent washing out the downstream inlet. Marlin Saggboy requested that this turnout be replaced with a smaller gate appropriately sized for the flow.
- 6. Marlin Saggboy requested that safety railings be installed around the inlet to the siphon to protect workers while cleaning the inlet.
- 7. Rudy Keedah asked that a comparison between PVC and HDPE be made before selecting HDPE. This is the pipe material currently being used in the design.
- 8. Keller-Bliesner provided an overview of the abandonment plan which is to pump cellular concrete in a 1200 ft section of Helium Siphon. There was much discussion on the need to do such a length with the consensus that we couldn't predict the future on whether or not somebody was going to build on top o the siphon. Rudy requested that estimated for other methods of abandoning pipe be derived, estimated, and compared to the current proposed method.

9.	Resolution of support going before Shiprock chapter on May 11, 2016 at 6:00 PM

Michael Isaacson	David Tallman	Marlin Saggboy	Rudy Keedah

www.kelbli.com .

Phone 435.753.5651•

Fax 435.753.6139 •

78 East Center, Logan, Utah 84321

To: David Tallman, NNDWR

From: Mike Isaacson, Keller-Bliesner Engineering, LLC

Date: October 19, 2016

RE: Helium Siphon, October 13, 2016, 90% Review Conceptual of Design Review Minutes

Attendance:

David Tallman, NNDWR
Wayne Williams, BIA
Marlin Saggboy, NNDWR (by phone)
Michelle Begay, BIA
Pearl Chamberlin, BIA
Rudy Keedah, BIA
Francis Johnson, NNDWR
Mike Isaacson, Keller-Blienser Engineering, LLC

Location/Time:

BIA - Navajo Region Office Conference. 10 AM - 12:30 PM

- 1. Introductions were made and brief background of the project was given.
- 2. Project timeline reviewed by Mike Isaacson.
- 3. Alignment route reviewed.
- 4. Discussion on analysis for selecting piping material. The two options presented were HDPE and PVC. PVC has an obvious economical advantage and is suitable for this job. The engineering recommended that PVC be specified with the exceptions of the river crossing and the road crossings. Marlin Saggboy recommended that HDPE be used from 200 ft each site of the river because of the dewatering requirements next to the river. The sturdier HDPE will lessen the chance of having to re-excavate the pipe to repair it. The group agreed with the recommendation to use PVC except for the river crossing (200 ft each side) and the road crossing. Rudy Keedah suggested that the cost estimate for the project be revised to have PVC as the main material and HDPE for the crossings.
- 5. Discussed the river crossing plan of requiring the design-build contractor to investigate the existing 42-inch steel siphon underneath the river to determine if it may be used as a sleeve for the new pipe. The method would be to excavate each end, dewater the pits, cut the pipe on both ends, and explore the pipe section underneath the river with a camera. If the camera doesn't reveal any obstacle, then a cable or rope could be threaded through the existing pipe to pull a smaller steel pipe through to clean it out. Once clean, the new 36-inch HDPE pipe can be pulled though and remain in place. Alternatively, a 30-inch HDPE pipe may also work for this section. If the pipe insertion doesn't work, then the pipe can be pulled back and used for the new river crossing. After much discussion, the group decided this plan was worth pursuing.

- 6. A discussion on the contracting language required to make the river crossing plan work. The contract would have to require the contractor to investigate the pipe first and try to utilize it. If this was not successful, then the contractor would be paid to actually divert the river and install the pipe. Keller-Blienser was going to revise the contract language with the comments provided during the meeting and then have BIA and NNDWR review again.
- 7. Pearl Chamberlin suggested that the abandonment plan for Helium Siphon in the residential neighborhood be inserted into the contract as an option in order to take advantage of any savings generated from this project or other projects. If this item is included into the contract, then it will be simple to implement should funds become available. The group agreed with this suggestion.
- 8. Dine College Shiprock Demonstration Farm project was briefly discussed. This work rehabilitating Helium Siphon has resulted in Dine College choosing to invest in their farm.

Michael Isaacson	David Tallman	Marlin Saggboy	Rudy Keedah

APPENDIX G - ABANDONMENT PLAN HELIUM SIPHON

Abandonment Plan Helium Siphon

Prepared for

Navajo Nation Department of Water Resources PO Box 678 Fort Defiance, AZ 86504

Prepared by

Keller-Bliesner Engineering, LLC 78 East Center Logan, UT 84321

April 25, 2016

TABLE OF CONTENTS

LIST OF TA	BLES	I
LIST OF FIG	GURES	[
	JND	
	_OGY	
COST ESTI	MATE	. 3
LIST OF T	ABLES	
Table 1.	Cost Estimate to Abandon and Fill 1,200 Feet of Helium Siphon with Cellular Concrete	
LIST OF F	IGURES	
	Existing Helium Siphon Alignment	
Figure 2.	Helium Siphon Section to be Filled with Cellular Concrete	.2

BACKGROUND

The Helium Siphon has not been functional for about 10 years. While in operation, the siphon served almost 1,000 acres on the south side of Shiprock. The existing siphon is a 40-inch steel coal tar pipeline approximately 9,750 feet long. The siphon is fed by the Hogback Canal, crosses the San Juan River, and discharges into the Helium Lateral (Figure 1).

When the Helium Siphon was originally constructed, a right-of-way or easement was not obtained. Over the last 10-15 years, significant development has occurred along portions of the siphon alignment. This development includes the Diné College, NTUA field yard, NNDWR field yard, and multiple residential homes. The new Helium Siphon alignment will be rerouted outside the developed area so that it is adjacent to the farm land served by the siphon. The existing siphon located in the developed area will be abandoned in place. To avoid ground subsidence in the developed area, this siphon abandonment plan describes how the existing siphon will be filled with cellular concrete for the section shown in Figure 2.

Figure 1. Existing Helium Siphon Alignment

Figure 2. Helium Siphon Section to be Filled with Cellular Concrete

METHODOLOGY

There is a 1,200 ft section of the Helium Siphon that will be filled with 120 psi cellular concrete or approved equal. This 1,200 ft section will be split into two sections of approximately 600 ft each. The approximate location of the beginning, midpoint, and end access points are shown in Figure 2. These access points are approximate locations that require approval by nearby home owners plus cultural and biological clearance. The siphon alignment shown in Figures 1 and 2 is approximate and will require field investigation to locate the siphon.

At each access point, a 5 to 10 ft section shall be cut out of the siphon and two bulk heads shall be installed. At each end of the two 600 ft sections to be filled with cellular concrete one steel 2-inch injection port and one steel 2-inch vent port shall be installed.

Two contractors will be used on this project. The first shall locate the three access points, cut a 5-10 ft section at each access point, install six bulk heads (two at each access point), and install the four 2-inch vent ports and four 2-inch injection ports near the bulk heads at each end of the two 600 ft siphon sections. The first contractor can be NNDWR Shiprock Irrigation if so desired.

The second contractor shall be responsible for providing all necessary materials, equipment, and labor necessary to fill the two 600 ft 40-inch pipe sections with cellular concrete in accordance with the following specifications:

- Cellular concrete specifications
 - o Cast density: 32 PCF
 - o 28 day minimum compressive strength: 120 psi
 - Minimum bearing capacity: 8.6 tons/ft²
 - Elastizill PS 120 or approved equal
- Each of the two 600 ft pipe sections shall be filled in one continuous process until the cellular concrete is observed at the proper level at each of the two vents.
- The Contractor shall maintain proper cast density throughout the entire grouting process. The density shall be checked at least once per hour during concrete pumping.
- The cellular concrete and all necessary labor, materials, equipment, and supervision for the installation of the fill shall be provided by the Contractor. The cellular concrete concentrate shall comply with ASTM C869 and tested in accordance with ASTM C796.
- During placement of the initial batches for each siphon section, the density shall be checked and the mix adjusted as required to obtain the specified cast density at the point of placement. All tests required to maintain quality assurance shall be at the expense of the Contractor.
- The contractor shall verify complete void filling by monitoring the volume and density placed.
- Portland Cement. Shall conform to ASTM C-150 Type I, II or III and shall conform to Elastizell specifications or approved equal.
- Water, Shall be clean and free of deleterious materials.

COST ESTIMATE

The total estimated cost for filling the 1,200 ft section of the siphon with the specified cellular concrete is \$60,690 (Table 1). This section to be abandoned is near or directly below several existing homes and Highway 64 so this project is a high priority. The Diné College is also very close to the existing siphon. However, during construction of the college the portion of the siphon closest to the college buildings was encased in concrete. Although not included in this project, for safety and surface water runoff reasons, it is recommended that the abandoned siphon outlet also be sealed off.

Table 1. Cost Estimate to Abandon and Fill 1,200 Feet of Helium Siphon with Cellular Concrete

ITEM DESCRIPTION	QUANTITY	UNIT	UNIT	TOTAL COST
Mob./Demob.	Lump Sum	-	\$3,500	\$3,500
Locate and Excavate Pipe	3	EA	\$500	\$1,500
Cut and Remove 5-10 ft Section of Siphon	3	EA	\$1,000	\$3,000
Weld Bulkheads on 40" Steel Pipe	6	EA	\$750	\$4,500
Expose Top of Siphon, Clean, and Weld				
Two Steel 2-inch Injection Ports	4	EA	\$300	\$1,200
Inject Cellular Concrete to Fill Voids	388	\$/CY	\$100	\$38,800
Contingency				\$5,300
Total			<u> </u>	\$57,800
Navajo Nation Business Activity Tax				\$2,890
Grand Total				\$60,690