Bohannan 🛦 Huston

7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

April 7, 2022

Monica Redhouse Project Control Engineer/Estimator Navajo Engineering & Construction Authority (NECA) #1 Uranium Blvd, P.O. Box 969 Shiprock, NM 87420

Re: Ft. Defiance Sewer Line Arroyo Crossing Rehabilitation

Bohannan Huston, Inc. was asked to assess the existing gravity sewer line crossing and arroyo approximately 950 feet south and 875 feet west of the intersection of Kit Carson Drive and Indian Route 112 in Ft. Defiance, AZ. The existing elevated pipeline has been damaged and pier supports have failed in several locations.

We recommend the existing piping and pier supports be removed and replaced with new concrete piers and tamper-resistant, adjustable pipe support stanchions at approximately 30'-0" O.C. and new 316SS 8" diameter, schedule 40 pipe. The new piers should be 1'-2" x 1'-2" square columns, reinforced with (4) #7 vertical bars (at corners), and #3 ties at 8" O.C. TYP, bearing on a minimum 3'-0" x 3'-0" x 1'-0" thick foundation reinforced with (4) #4 bars each way top and bottom. See Detail 5 and structural calculations.

At the bank, the new pipe should bear on a new concrete block foundation. The foundation should be installed in the soil bank currently supporting the existing pipe, be $2'-0" \times 2'-0" \times 1'-0"$ thick minimum, and bear a minimum of 2'-6" below grade. The foundation should be reinforced with (3) #4 bars each way top and bottom. See Detail 6.

Installation of new piers should occur prior to pipeline section replacement, to minimize downtime for the pipeline. Where necessary for new pier installation, temporary shoring of the pipeline may be implemented to allow for removal of existing piers.

The new pipe should be connected to the existing pipe with a rigid connection such as a flanged connection. A flanged connection can be installed to the existing pipe by field cutting and installing a Mega Flange Adaptor to the pipe end, this is the preferred method of connection. Alternately, the connection may also be made with the use of a dresser coupling as long as the two material types are electrically isolated from each other. This installation would still require the existing pipe to be field cut, but would also allow for field cutting of the new 316SS pipe, if necessary. Cradle support should be provided on both pipe end sections so as not to allow any deflection or stress at the connection between the two pipe ends.

Sincerely,

Nisa Rascon, PE Water Systems Matt Bean, PE Structural Engineering Cody MacLake, El Structural Engineering

NR/mjb/cm Enclosures Engineering A Spatial Data

Advanced Technologies A

Bohannan A Huston	Project Ft. Defiance	Sewer Line Arro	Job Ref. 20220396			
www.bhinc.com 800.877.5332	Section		Sheet no./rev			
Z500 lefferson St NE	Pipe Crossin	g			2/0	
Albuquerque, NM 87109	Calc. by SCM	Date 3/15/2022	Chk'd by MJB	Date 3/15/2022	App'd by	Date
				Dead × 1.	20	
				Live × 1.6	0	
				Roof live	× 1.60	
				Snow \times 1	.60	
		Support B		Dead \times 1.	20	
				Live × 1.6	0	
				Roof live	× 1.60	
				Snow \times 1	.60	
Analysis results						
Maximum moment		M _{max} = 9.7 kip	os_ft	$M_{min} = 0 \mathbf{k}$	ips_ft	
Maximum shear		V _{max} = 1.1 kip	S	V _{min} = -1.	l kips	
Deflection		$\delta_{max} = 0.7$ in		$\delta_{\min} = 0 $ in		
Maximum reaction at support A		$R_{A_{max}} = 1.1 k$	kips Line e	$R_{A_{min}} = 1$.1 kips	
Unfactored dead load reaction at s	support A	$R_{A}_{Dead} = 0.7$	kips			
Maximum reaction at support B	ippon A	$R_{A_Live} = 0.1 \text{ kips}$			1 kins	
Unfactored dead load reaction at s	support B	$R_{B_{max}} = 1.1 R_{\mu} s \qquad R_{B_{min}} =$			пара	
Unfactored live load reaction at su	ipport B	R _{B_Live} = 0.1 k	ips			
Section details						
Section type		Pipe STD x8	(AISC 15th E	dn (v15.0))		
ASTM steel designation		A53 Gr.B	•			
Steel yield stress		F _y = 35 ksi				
Steel tensile stress		F _u = 60 ksi				
Modulus of elasticity		E = 29000 ks	i			
				⁵ .		
		8.63"		•		
Resistance factors Resistance factor for tensile yieldi	ng	8.63" φ _{ty} = 0.90				
Resistance factors Resistance factor for tensile yieldi Resistance factor for tensile ruptu	ng	$\phi_{ty} = 0.90$ $\phi_{tr} = 0.75$				
Resistance factors Resistance factor for tensile yieldi Resistance factor for tensile ruptu Resistance factor for compression	ng	$\phi_{ty} = 0.90$ $\phi_{tr} = 0.75$ $\phi_{c} = 0.90$				

Bohannan	Project	Project Job Ref.					
www.bhinc.com 800.877.5332	FL. Denance	Sewer Line Arro	20220390				
Bohannan Huston	Section Pipe Crossir	ng			Sheet no./rev. 3 / 0		
Albuquerque, NM 87109	Calc. by SCM	Date 3/15/2022	Chk'd by MJB	Date 3/15/2022	App'd by	Date	
Lateral bracing		Cron 1 hos a					
Classification of sections for l	ocal buckling -	Span Thas c	continuous laten	ar bracing			
Classification of section in fle	xure - Table B4	1b (case 20)					
Width to thickness ratio		$D_{o}/t = 28.75$	1				
Limiting ratio for compact section	n	$\lambda_{\rm rff} = 0.07 \times F$	= / E ₂ = 58 00				
Limiting ratio for non-compact section	ection	$\lambda_{\rm rff} = 0.31 \times E$	$E / F_v = 256.86$	Compact			
			, i y = 00100	S	ection is com	pact in flexure	
Design of members for shear -	Chapter G						
Required shear strength		Vr = max(abs	i(V _{max}), abs(V _{min})) = 1.057 kips			
Nominal shear strength - eq G6-	1	$V_n = 0.6 \times F_y$	× A / 2 = 82.42	5 kips			
Resistance factor for shear		$\varphi_{\!\scriptscriptstyle V}=\boldsymbol{0.90}$					
Design shear strength		$V_c = \varphi_v \times V_n =$	74.183 kips				
		PASS	S - Design shea	ar strength exce	eds required s	shear strength	
Design of members for flexure	in the major a	xis - Chapter F	-	•	-	•	
Required flexural strength		$M_r = max(abs(M_{s1_max}), abs(M_{s1_min})) = 9.735 \text{ kips}_ft$					
Yielding - Section F8.1							
Nominal flexural strength for yiel	ding - eq F8-1	$M_{\text{nyld}} = M_{\text{p}} = F$	$F_{y} \times Z = 60.667$	kips_ft			
Nominal flexural strength		M _n = M _{nyld} = 60.667 kips_ft					
Design flexural strength		$M_{c} = \phi_{b} \times M_{n} = 54.600 \text{ kips_ft}$					
		PASS - D	Design flexural	strength exceed	ds required fle	xural strength	
Design of members for vertica							
Consider deflection due to dead,	, live, roof live a	nd snow loads	0 0 4 9 9 5 -				
Limiting deflection		$\partial_{\text{lim}} = L_{s1} / 180 = 2.133 \text{ In}$					
Maximum deflection span 1		$\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.678 \text{ in}$					
		PASS - Maximum deflection does not exceed deflection lin					

Search Information

Site Class:

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
SS	0.173	MCE _R ground motion (period=0.2s)
S ₁	0.05	MCE _R ground motion (period=1.0s)
S _{MS}	0.277	Site-modified spectral acceleration value
S _{M1}	0.12	Site-modified spectral acceleration value
S _{DS}	0.185	Numeric seismic design value at 0.2s SA
S _{D1}	0.08	Numeric seismic design value at 1.0s SA

◄Additional Information

Name	Value	Description
SDC	В	Seismic design category
Fa	1.6	Site amplification factor at 0.2s
Fv	2.4	Site amplification factor at 1.0s
CRS	0.902	Coefficient of risk (0.2s)
CR ₁	0.93	Coefficient of risk (1.0s)
PGA	0.094	MCE _G peak ground acceleration
F _{PGA}	1.6	Site amplification factor at PGA
PGAM	0.15	Site modified peak ground acceleration
ΤL	4	Long-period transition period (s)
SsRT	0.173	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.192	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.05	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.054	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Bohannan 🛦 Huston	Bohannan A Huston Project Engineering FT DEFIANCE SEWER REPLACEMENT Spatial Data Section 7500 Jeffereson St NE SEISMIC LOADING					
Spatial Data Advanced Technologies 7500 Jeffereson St NF						
Albuquerque, NM 87109	Calc. by SCM	Date 4/6/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date
					-	
SEISMIC FORCES (ASCE 7-10	<u>)</u>				Tedds calcula	tion version 3.1.00
Site parameters		П				
Manad acceleration parameter	s (Section 11 / 1)				
at short period	5 (Section 11.4.1	$S_{0} = 0.173$				
at 1 sec period		$S_{\rm S} = 0.173$				
Site coefficientat short period (T	able 11 /_1)	51 - 0.05 E - 1.600				
at 1 sec period (Table 11.4-2)	able 11.4-1)	F _a = 1.800 F _v = 2.400				
Spectral response acceleratio	n parameters					
at short period (Eq. 11.4-1)		$S_{MS} = F_a \times S_S$	= 0.277			
at 1 sec period (Eq. 11.4-2)		$S_{M1} = F_v \times S_1$	= 0.120			
Design spectral acceleration p	oarameters (Sec	t 11.4.4)				
at short period (Eq. 11.4-3)		$S_{DS} = 2/3 \times$	S _{MS} = 0.185			
at 1 sec period (Eq. 11.4-4)		$S_{D1} = 2 / 3 \times 3$				
Seismic design category Risk category (Table 1.5-1)		III				
Seismic design category based	on short period r	esponse accelera B	ation (Table 11	.6-1)		
Seismic design category based	on 1 sec period r	esponse acceler B	ation (Table 11	.6-2)		
Seismic design category		B				
Approximate fundamental per	iod					
Height above base to highest le	vel of building	h _n = 8 ft				
From Table 12.8-2:						
Structure type		All other syst	ems			
Building period parameter Ct		$C_{t} = 0.02$				
Building period parameter x		x = 0.75				
Approximate fundamental period	d (Eg 12.8-7)	$T_a = C_t \times (h_n)^2$	<pre>' × 1sec / (1ft)^x=</pre>	= 0.095 sec		
Building fundamental period (Se	ect 12.8.2)	T = T _a = 0.09	5 sec			
Long-period transition period	,	$T_L = 4 \sec \theta$				
Seismic response coefficient						
Seismic force-resisting system (Table 12.2-1)	A. Bearing_V 2. Ordinary re	/all_Systems	ete shear walls		
Response modification factor (T	able 12.2-1)	R = 4				
Seismic importance factor (Tabl	e 1.5-2)	_e = 1.250				
Seismic response coefficient (Seismic response coefficient (Seismi	ect 12.8.1.1)					
Calculated (Eq 12.8-3)	,	$C_{s calc} = S_{DS} /$	(R / I _e) = 0.057	7		
Maximum (Eg 12.8-3)		$C_{s max} = S_{D1}/$	$((T / 1 \text{ sec}) \times ($	R / Ie)) = 0.2628		
Minimum (Eq 12.8-5)		$C_{s min} = max($	$0.044 \times S_{DS} \times I_{e}$	₀,0.01) = 0.0101		
\ I = -/			2011	,		

Bohannan Luston Engineering Spatial Data Advanced Technologies 7500 Jeffereson St NE	Project FT DEFIANCE SEWER REPLACEMENT				Job Ref. 20220396	Job Ref. 20220396		
	Section SEISMIC LOADING					Sheet no./rev. 2		
	Albuquerque, NM 87109	Calc. by SCM	Date 4/6/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date	
	Seismic response coefficient		C _s = 0.0577					
Seismic base shear (Sect 12.8		1)	M = 4.0 kin	_				

Effective seismic weight of the structureW = 1.0 kipsSeismic response coefficient $C_s = 0.0577$ Seismic base shear (Eq 12.8-1) $V = C_s \times W = 0.1$ kips

PROJECT NAME	SHEET	_ OF
PROJECT NO	BY	DATE
SUBJECT	CH'D	DATE

Bohannan 🛦 Huston			Sheet No.	1	of	1
			Project:	T DEFIANCE S	EWER REPLACEMEN	NT
Courtvard I			Subject:	OADS		
7500 Jefferso	n St. NE		Client:	NECA	Job Number:	20220396
Albuquerque,	NM	Prepared By: SCM	Prepared By:	Date:	4/1/2022	
87109-4335			Checked By: _	MJB	Date:	4/1/2021
	Dead Load					
	8 ft	Height of Column				
	2.700 k	Weight of Column				
	0.857 k	Weight of Pipe				
	0.800 k	Weight of Fluid				
	3.557 k	Total				
	Live Load					
	0.200 k	Weight of LL				
,	Wind Load					
F	0.005 k	Wind Load				
h/2+0.05h	4.400 ft	ASCE 7-10 Fig. 29.4-1				
	0.022 k-ft	Moment due to Wind				
S	eismic Load					
Cs	0.058					
W	3.557 k					
V	0.20521 k	Seismic Base Shear				
V*h/2	0.82084	Seismic Moment				

Bohannan A Huston	Project FT DEFIANCE SEWER REPLACEMENT				Job Ref.	
Spatial Data Advanced Technologies Bohannan Huston, Inc.	Section SUPPORT PIER DESIGN				Sheet no./rev. 1	
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date

RC RECTANGULAR COLUMN DESIGN (ACI318-14)

	Tedds calculation version 2.2.02
У	,
	4 x No. 7 longitudinal bars
	4 × NO. 7 longitudinal bars
x <mark>1</mark> -	x
	No. 3 ties @ 14 in c/c
У	,
↓ 1'	2"
Applied loads	
Ultimate axial force acting on column	P _{u_act} = 10 kips
Ultimate moment about major (X) axis	M _{ux_act} = 10 kips_ft
Geometry of column	
Depth of column (larger dimension of column)	h = 14.0 in
Width of column (smaller dimension of column)	b = 14.0 in
Clear cover to reinforcement (both sides)	c _c = 1.5 in
Unsupported height of column about x axis	l _{ux} = 7.0 ft
Effective height factor about x axis	k _x = 1.00
Column state about the x axis	Unbraced
Unsupported height of column about y axis	l _{uy} = 7.0 ft
Effective height factor about y axis	ky = 1.00
Column state about the y axis	Unbraced
Check on overall column dimensions	
	Column dimensions are OK - h < 4b
Reinforcement of column	
Numbers of bars of longitudinal steel	N = 4
Longitudinal steel bar diameter number	D _{bar_num} = 7
Diameter of longitudinal bar	D _{long} = 0.875 in
Stirrup bar diameter number	D _{stir_num} = 3
Diameter of stirrup bar	D _{stir} = 0.375 in
Specified yield strength of reinforcement	f _y = 60000 psi
Specified compressive strength of concrete	f′ _c = 4000 psi
Modulus of elasticity of bar reinforcement	Es = 29 × 10 ⁶ psi
Modulus of elasticity of concrete	E _c = 57000 × f′c ^{1/2} × (1psi) ^{1/2} = 3604997 psi

Bohannan 🛦 Husto	n Project FT DEFIANO	Project Job						
Engineering Spatial Data Advanced Technologies	Section	-			Sheet no./rev.			
Bohannan Huston, Ind	SUPPORT F	PIER DESIGN	ER DESIGN			2		
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date		
Yield strain		$\varepsilon_{y} = f_{y} / E_{s} =$	0.00207					
Ultimate design strain		ε _c = 0.003 in	/in					
Check for minimum are	a of steel - 10.6.1.1							
Gross area of column		$A_g = h \times b = 1$	196.000 in ²					
Area of steel		A_{st} = N $ imes$ (π	\times D _{long} ²) / 4 = 2.	405 in ²				
Minimum area of steel ree	quired	A _{st_min} = 0.01	× A _g = 1.960 in ²	2				
				Ast> Ast_min,	PASS- Minimu	m steel check		
Check for maximum are	ea of steel - 10.6.1.1							
Permissible maximum are	ea of steel	$A_{st_max} = 0.08$	B× A _g = 15.680 i	in ²				
				Ast< Ast_max, F	PASS - Maximu	ım steel check		
Slenderness check abo	ut x axis							
Radius of avration		$r_{v} = 0.3 \times h =$	= 4 2 in					
Actual clondornoss ratio		$r_{x} = k \times l$						
Actual Siendemess fallo		$S_{rx_{act}} - R_x \times I_{ux} / I_x - 20$						
.		Sienderness		an 22, Sienderne		y be neglected		
Slenderness check abo	ut y axis							
Radius of gyration		$r_y = 0.3 \times b = 4.2$ in						
Actual slenderness ratio		$s_{ry_act} = k_y \times l_{uy} / r_y = 20$						
		Slenderness	ratio is less tha	an 22, slenderne	ess effects ma	y be neglected		
Axial load capacity of a	xially loaded column							
Strength reduction factor		φ = 0.65						
Area of steel on compres	sion face	A's = Ast / 2 = 1.203 in ²						
Area of steel on tension f	ace	$A_s = A_{st} / 2 = 1.203 \text{ in}^2$						
Net axial load capacity of	column	$P_n = 0.8 \times (0.85 \times f'_c \times (A_g - A_{st}) + f_y \times A_{st}) = 642.031 \text{ kips}$						
Ultimate axial load capac	ity of column	$P_u = \phi \times P_n =$	417.320 kips					
				PASS : Co	olumn is safe i	n axial loading		
Uniaxially loaded colum	nn about major axis							
Details of column cross	-section							
c/d _t ratio		r _{xb} = 0.188						
Effective cover to reinforce	cement	d' = $c_c + D_{stir} + (D_{long}/2) = 2.313$ in						
Spacing between bars		s = ((h – (2×	d')))/ ((N/2)-1) =	• 9.375 in				
Depth of tension steel		d _t = h - d' = 1	11.687 in					
Depth of NA from extreme	e compression face	$c_x = r_{xb} \times d_t =$	2.196 in					
Factor of depth of compre	essive stress block	β ₁ = 0.850						
Depth of equivalent recta	ngular stress block	a _x = min((β ₁ >	< c _x), h)= 1.866	in				
Yield strain in steel		$\varepsilon_{sx} = f_y / E_s =$	0.002					
Strength reduction factor		$\phi_{\rm x} = 0.900$						
Details of concrete bloc	:k							
Force carried by concre	ete							
Forces carried by concre	te	P _{xcon} = 0.85	\times f' _c \times b \times a _x =	88.840 kips				

	Project FT DEFIANC	ANCE SEWER REPLACEMENT							
Spatial Data Advanced Technologies Bohannan Huston, Inc.	Section SUPPORT P	IER DESIGN			Sheet no./rev. 3				
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date			
Moment carried by concrete									
Moment carried by concrete		M _{xcon} = P _{xcon}	× ((h/2) – (a _v /2))) = 44.914 kip ft					
Details of steel laver 1			(()	,,,					
Depth of laver		x _{x1} = 2.313 in	ı						
Strain of layer		$\varepsilon_{x1} = \varepsilon_c \times (1 - 1)$	x _{x1} / c _x) = -0.00	0016					
Stress in layer		σ _{x1} = max(-1	× f_{v} , $E_s \times \varepsilon_{x1}$) =	-4626.39 psi					
Force carried by layer		$P_{x1} = N_x \times A_b$	$_{ar} \times \sigma_{x1} = -5.56$	4 kips					
Moment carried by steel layer		$M_{x1} = P_{x1} \times (($	(h / 2) - x _{x1}) = -2	2.173 kip ft					
Details of steel layer 2			. , ,						
Depth of laver		X _{x2} = 11.688	in						
Strain of layer		$\varepsilon_{x2} = \varepsilon_c \times (1 - 1)$	$\epsilon_{x^2} = \epsilon_c \times (1 - x_{x^2} / c_x) = -0.01297$						
Stress in layer		$\sigma_{x2} = max(-1 \times f_y, E_s \times \epsilon_{x2}) = -60000.00 \text{ psi}$							
Force carried by layer		$P_{x2} = N_x \times A_{bar} \times \sigma_{x2} = -72.158$ kips							
Moment carried by steel layer		M _{x2} = P _{x2} × ((h / 2) - x _{x2}) = 28.187 kip_ft							
Force carried by steel									
Sum of forces by steel		P _{xs} = -77.7 k	tips						
Total force carried by column									
Nominal axial load strength		P _{nx} = 11.117	kips						
Strength reduction factor		$\phi_{x} = 0.900$							
Ultimate axial load carrying capaci	ty of column	$P_{ux} = \phi_x \times P_{nx} =$ 10.005 kips							
Total moment carried by column	1								
Total moment carried by column		M _{ox} = 70.928 kip_ft							
Ultimate moment strength capacity	of column	$M_{ux} = \phi_x \times M_{ox} = 63.835 kip_ft$							
Check load capacity for uniaxial	loads about	the x axis							
Factored axial load		P _{u_act} = 10 kip	ps						
Ultimate axial capacity		P _{ux} = 10 kips							
		1	PASS - Ultima	te axial capacity	exceeds fac	tored axial load			
Factored moment about x axis		$M_{ux_{act}} = 10 \text{ kip}_{ft}$							
Ultimate moment capacity about tr	ie x axis	Mux = 63.8 Ki	p_π e moment can	acity exceeds fa	actored mome	ont about x axis			
Decime of column tice, 25.7.2		7 400 - 0111114	e moment cap						
Spacing of lateral ties		Su 414 = 14 00	10 in						
16 times longitudinal bar diameter		$s_{v_1} = 16 \times D_{v_1}$	ong = 14.000 in						
48 times tie bar diameter		$s_{v2} = 48 \times D_{eff}$	_{fir} = 18.000 in						
Least column dimension		s _{v3} = min (h.t	o) = 14.000 in						
Required tie spacing		$s = min(s_{v1}, s_v)$	_{v2} ,s _{v3}) = 14.000) in					
· · · ·						s _{v_ties} < s PASS			

Bohannan A Huston	Project	Job Ref.						
Engineering	FT DEFIANCE							
	Section Huston Inc FOOTING							
7500 Jefferson St. NE		Dete	Chlidhu	Data	App'd by Data			
Albuquerque, NM 87109	SCM	4/1/2022	MJB	4/1/2022	Appaby	Date		
Horizontal acceleration factor		$K_{h} = 0.4$						
Vertical acceleration factor	$K_v = 0$							
Acceleration coefficient		$\theta = atan(K_h / (1 - K_v)) = 21.801$						
Passive pressure coefficient (Could	omb)	$K_{P} = sin(90 - \phi_{b})^{2} / (sin(90 + \delta_{b}) \times [1 - \sqrt{[sin(\phi_{b} + \delta_{b}) \times sin(\phi_{b})} / (sin(90 + \delta_{b}) \times sin(\phi_{b})) / (sin(0) + \delta_{b}) / (sin(0) + \delta_{b})) / (sin(0) + \delta_{b}) / (sin(0) + \delta_{b}) / (sin(0) + \delta_{b}) / (sin(0) + \delta_{b}) / (sin(0) + \delta_{b})) / (sin(0) + \delta_{b}) / (sin(0$						
		δ _b))]] ²) = 4.977						
Passive dynamic pressure coefficient	ent (M-O)	$K_{PE} = 0 = 0$						
Self weight		$F_{swt} = h \times \gamma_{conc}$	= 150 psf					
Soil weight		$F_{soil} = h_{soil} \times \gamma_{so}$	ii = 237.5 psf					
Column no.1 loads								
Dead load in z		F _{Dz1} = 6.0 kips						
Live load in z		F _{Lz1} = 0.5 kips						
Wind load in x		F _{Wx1} = 0.0 kips	6					
Seismic load in x		F _{Ex1} = 0.3 kips						
Wind load moment in x	Wind load moment in x $M_{Wx1} = 0.0 \text{ kip_ft}$							
Seismic load moment in x $M_{Ex1} = 1.0 \text{ kip}_{ft}$								
Footing analysis for soil and sta	bility							
Load combinations per ASCE 7-	10							
1.0D (0.703)								
1.0D + 1.0L (0.740)								
1.0D + 1.0Lr (0.703)								
1.0D + 1.0S(0.703) 1.0D + 1.0R(0.703)								
1.0D + 0.751 + 0.751 r (0.731)								
1.0D + 0.75L + 0.75S (0.731)								
1.0D + 0.75L + 0.75R (0.731)								
1.0D + 0.6W (0.706)								
$(1.0 + 0.14 \times S_{DS})D + 0.7E$ (0.931)								
1.0D + 0.75L + 0.75Lr + 0.45W (0.	733)							
1.0D + 0.75L + 0.75S + 0.45W (0.1	733)							
1.0D + 0.75L + 0.75R + 0.45W (0.1	733)							
$(1.0 + 0.10 \times S_{DS})D + 0.75L + 0.75$	S + 0.525E (0.8	98)						
0.6D + 0.6W (0.425)								
$(0.6 - 0.14 \times S_{DS})D + 0.7E (0.453)$								
Combination 10 results: (1.0 + 0.	.14 × S _{DS})D + 0.7	7E						
Forces on foundation								
Force in x-axis	$F_{dx} = \gamma_E \times F_{Ex1} = 0.2 \text{ kips}$							
Force in z-axis		$F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} = 10.8 \text{ kips}$						
Moments on foundation								
Moment in x-axis, about x is 0		$M_{dx} = \gamma_D \times (A \times a_{dx})$	$(F_{swt} + F_{soil}) \times L_{soil}$	ς / 2) + γ _D × (F _{Dz1}	$\times \mathbf{x}_1$) + $\gamma_{E} \times (N)$	1 _{Ex1} +F _{Ex1} × h)		
Moment in y-axis, about y is 0		$M_{dy} = \gamma_D \times (A \times A)$	$(F_{swt} + F_{soil}) \times L_{y}$	/ 2) + γ _D × (F _{Dz1}	× y ₁) = 16.2 ki	p_ft		

Bohannan 🛦 Huston	Project FT DEFIAN	ICE SEWER REF	Job Ref.	Job Ref.				
Engineering Spatial Data	Section		Sheet no /rev					
Bohannan Huston, Inc.	FOOTING		3					
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date		
Uplift verification						·		
Vertical force		F _{dz} = 10.816	kips					
				PASS - Foun	dation is not s	ubject to uplift		
Stability against overturning in x	direction, r	noment about x	is L _x					
Overturning moment		$M_{OTxL} = \gamma_E \times$	$(M_{Ex1}+F_{Ex1} \times h)$	= 0.87 kip_ft				
Resisting moment		$M_{RxL} = -1 \times ($	γ _D × (A × (F _{swt} +	- F _{soil}) × L _x / 2)) +	$\gamma_{\rm D} \times (\mathbf{F}_{\rm Dz1} \times (\mathbf{x}_1 \cdot$	· L _x)) = -16.22		
<u> </u>		kip_ft		, ,,				
Factor of safety		abs(M _{RxL} / M	lotxl) = 18.541					
		PASS - Over	turning mome	nt safety factor e	exceeds the m	inimum of 1.00		
Stability against sliding								
Resistance due to base friction		$F_{\text{REdiction}} = ma$	$ax(F_{dz}, 0 \text{ kN}) \times 1$	an(δ _{bb}) = 4.326 k	ips			
Stability against sliding in y dire	otion			(*05)	F -			
Stability against sliding in x dire		E OF				-		
Resistance from passive son press	sure	$\mathbf{F}_{\text{RxPass}} = 0.5 \times \mathbf{K}_{\text{PE}} \times (\mathbf{n}^2 + 2 \times \mathbf{n} \times \mathbf{n}_{\text{soil}}) \times \mathbf{L}_{\text{y}} \times \gamma_{\text{soil}} = 0.614 \text{ kips}$						
Foster of acfety	$F_{Rx} = F_{RFriction} + F_{RxPass} = 4.94 \text{ KIPS}$							
Factor of Salety		$abs(F_{Rx} / F_{dx}) = 28.23$				inimum of 1 00		
- · · · <i>i</i>			AGG - Gliullig I	actor or sarely a				
Bearing resistance								
Eccentricity of base reaction								
Eccentricity of base reaction in x-a	xis	$e_{dx} = M_{dx} / F_{dx}$	$_{z} - L_{x} / 2 = 0.97$	71 in				
Eccentricity of base reaction in y-a	xis	$\mathbf{e}_{dy} = \mathbf{M}_{dy} / \mathbf{F}_{dz} - \mathbf{L}_y / 2 = 0$ in						
Pad base pressures								
		$q_1 = F_{dz} \times (1$	$-6 \times e_{dx}/L_{x}-6$	$6 \times e_{dy} / L_y) / (L_x \times$	L _y) = 1.007 ksf			
		$q_2 = F_{dz} \times (1$	$-6 \times e_{dx} / L_x +$	$6 \times e_{dy} / L_y) / (L_x \times$	< L _y) = 1.007 kst	:		
		$q_3 = F_{dz} \times (1$	+ 6 × e_{dx} / L_x -	$6 \times e_{dy} / L_y) / (L_x \times$: L _y) = 1.396 ksf			
		$q_4 = F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.396$ ksf						
Minimum base pressure		$q_{min} = min(q_1, q_2, q_3, q_4) = 1.007 \text{ ksf}$						
Maximum base pressure		$q_{max} = max(c)$	q ₁ ,q ₂ ,q ₃ ,q ₄) = 1.	396 ksf				
Allowable bearing capacity								
Allowable bearing capacity		$q_{allow} = q_{allow}$	_{Gross} = 1.5 ksf					
		$q_{max} / q_{allow} =$	0.931					
		PASS -	Allowable bea	aring capacity e	ceeds design	base pressure		
FOOTING DESIGN (ACI318)								
In accordance with ACI318-14								
Material details								
Compressive strength of concrete		ť _c = 4000 ps	i					
Yield strength of reinforcement		f _y = 60000 p	si					
Cover to reinforcement		$c_{nom} = 3$ in						
Concrete type		Normal weight						
Concrete modification factor		$\lambda = 1.00$						
Column type		Concrete						
Analysis and design of concrete	footing							

Bohannan & Huston					Job Ref.			
Engineering Spatial Data	Engineering Spatial Data Constinue Constitute Spatial Data							
Advanced Technologies Bohannan Huston Inc	on. Inc. FOOTING							
7500 Jefferson St. NE		Data	Chk'd hy	Data	App'd by	Data		
Albuquerque, NM 87109	SCM	4/1/2022	MJB	4/1/2022		Date		
Load combinations per ASCE	7-10							
1.4D (0.038)								
1.2D + 1.6L + 0.5Lr (0.039)								
Combination 2 results: 1.2D +	1.6L + 0.5Lr							
Forces on foundation								
Ultimate force in z-axis		$F_{uz} = \gamma_D \times A \times$	(F _{swt} + F _{soil}) + [,]	$\gamma_{D} \times F_{Dz1} + \gamma_{L} \times F_{L}$	_{z1} = 12.2 kips			
Moments on foundation								
Liltimate moment in v-avis, about	t v ic O	$M = v_{D} \times (A)$	、(F . エ F) 、	/ / 2) エッ _ア × (E ₂		(
	1 X 15 U	w _{ux} = γD × (A kip_ft	× (I swt + I soil) ×	ι Δ_X / Ζ) τ γD × (I D	z1 × λ 1) τ γL × (Ι	Lz1 × ×1) – 10.3		
Ultimate moment in y-axis, abou	t y is 0	M _{uy} = γ _D × (A kip_ft	\times (F _{swt} + F _{soil}) \times	: L _y / 2) + γ _D × (F _D	_{z1} × y 1) + γ∟ × (F	Lz1 × y1) = 18.3		
Eccentricity of base reaction								
Eccentricity of base reaction in >	-axis	$e_{ux} = M_{ux} / F_{ux}$	$L_{x} - L_{x} / 2 = 0$ in					
Eccentricity of base reaction in y	-axis	$e_{uy} = M_{uy} / F_{uz}$	$\frac{1}{2} - L_y / 2 = 0$ in					
Pad base pressures								
		$q_{u1} = F_{uz} \times (1)$	$-6 \times e_{ux} / L_{x} - 6$	$6 \times e_{iiv} / L_{v} / L_{v}$	L _v) = 1.354 ksf			
		$q_{u1} = F_{u2} \times (1)$	-6×e _w /1 _v +	6 × e / l) / (l	(1,) = 1.354 kst	:		
		$q_{u2} = \Gamma_{u2} \times (1$	+6×e _w /l _w -	6 × e / I) / (I)	(L.) – 1 354 kst	:		
		$q_{u3} = \Gamma_{u2} \times (1$	$+6 \times \alpha_{w}/1$	6 × e.u. / l.u) / (l.u.	× Lu) – 1 354 kg	f		
Minimum ultimate base pressure	2	$q_{u_4} = 1 u_2 \times (1$		1 354 kef	~ Ly) - 1.334 K3			
Maximum ultimate base pressure	<u>,</u>	qumin = min(qu	11, qu2, qu3, qu4) — 141 qu2 qu2 qu4) -	- 1 354 ksf				
	$q_{umax} = max(q_{u1},q_{u2},q_{u3},q_{u4}) = 1.334 \text{ KST}$							
		Snear diagram,	x axis (kips)					
0.6				0				
0								
		-4						
	Ν	loment diagram,	x axis (kip_ft)				
			1.1					
0				0				
		3						
Moment design, x direction, p	ositive momen	t						
Ultimate bending moment		$M_{u.x.max} = 1.12$	2 kip_ft					
Tension reinforcement provided		4 No.4 bottor	n bars (9.8 in c	/c)				
Area of tension reinforcement p	ovided	$A_{sx.bot.prov} = 0.$	8 in ²					
Minimum area of reinforcement	(8.6.1.1)	$A_{s.min} = 0.001$	$8 \times L_y \times h = 0.7$	78 in ²				
			PASS - Area c	of reinforcement	provided exce	eds minimum		

Bohannan Luston Engineering Project FT DEFIANCE SEWER REPLACEMENT					
Spatial Data Advanced Technologies Section			Sheet no./rev		
Bohannan Huston, Inc. FOOTING	6			5	
7500 Jefferson St. NE Calc. by	Date	Chk'd by	Date	App'd by	Date
SCM	4/1/2022	MJB	4/1/2022		
Maximum spacing of reinforcement (8.7.2.2)	Smax = min(2	× h 18 in) = 18	3 in		
F	PASS - Maximum p	ermissible re	inforcement spa	ncing exceeds	s actual spacing
Depth to tension reinforcement	d = h - c _{nom} -	φ _{x.bot} / 2 = 8.75	0 in	•	
Depth of compression block	a = A _{sx.bot.prov}	imes f _y / (0.85 $ imes$ f' _c	; × L _y) = 0.392 in		
Neutral axis factor	$\beta_1 = 0.85$				
Depth to neutral axis	$c = a / \beta_1 = 0$.461 in			
Strain in tensile reinforcement (8.3.3.1)	$\epsilon_t = 0.003 \times c$	d/c-0.003= 0	0.05390		
		PASS - Ter	nsile strain exce	eds minimun	n required, 0.004
Nominal moment capacity	$M_n = A_{sx.bot.pro}$	$_{vv} \times f_{y} \times (d - a / 2)$	2) = 34.216 kip_f	t	
Flexural strength reduction factor	$\phi_f = \min(\max$	(0.65 + (ε _t - 0.0	002) × (250 / 3), 0	0.65), 0.9) = 0.	900
Design moment capacity	$\varphi M_n = \varphi_f \times M_n$	= 30.794 kip_	ft		
	M _{u.x.max} / φM _n	= 0.036			
	PASS	- Design mor	ment capacity ex	ceeds ultima	nte moment load
One-way shear design, x direction					
JItimate shear force	V _{u.x} = 0.611	kips			
Depth to reinforcement	$d_v = h - c_{nom}$	- φ _{x.bot} / 2 = 8.7	5 in		
Shear strength reduction factor	$\phi_v = 0.75$				
Nominal shear capacity (Eq. 22.5.5.1)	$V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi}) \times L_y \times d_v} = 39.845 \text{ kips}$				
Design shear capacity	$\varphi V_n = \varphi_v \times V_n$	= 29.884 kips			
	$V_{u.x} / \phi V_n = 0$.020			
		PASS - Desigr	n shear capacity	exceeds ulti	mate shear load
	Shear diagram,	y axis (kips)			
	4				
0.6			0		
0			U		
	-4				
	Moment diagram	, y axis (kip_ft	:)		
0			0		
	3				
Noment design, y direction, positive mome	ent				
JItimate bending moment	$M_{u.y.max} = 1.1$	2 kip_ft			
Tension reinforcement provided	4 No.4 bottom bars (9.8 in c/c)				
Area of tension reinforcement provided	$A_{sy.bot.prov} = 0$	8 in ²			
Minimum area of reinforcement (8.6.1.1)	$A_{s.min} = 0.001$	$8 \times L_x \times h = 0.2$	778 in ²		
		PASS - Area	ot reinforcemen	t provided ex	ceeas minimum
viaximum spacing of reinforcement (8.7.2.2)	$S_{max} = min(2)$	× n, 18 in) = 18	s in		

	Project FT DEFIAN	Project FT DEFIANCE SEWER REPLACEMENT				Job Ref.		
Spatial Data Advanced Technologies Bohannan Huston, Inc.	Section FOOTING	Section FOOTING						
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date		
	P	ASS - Maximum	permissible re	einforcement sp	acing exceeds	s actual spa		
Depth to tension reinforcement		$d = h - c_{nom}$	-	:= 8.250 in				
Depth of compression block		a = A _{sy.bot.prov}	$_{\prime} imes$ f _y / (0.85 $ imes$ f	$T_{c} \times L_{x}$) = 0.392 in				
Neutral axis factor		$\beta_1 = 0.85$						
Depth to neutral axis		c = a / β ₁ = 0.461 in						
Strain in tensile reinforcement (8.3.3.1)	$\epsilon_t = 0.003 \times d / c - 0.003 = 0.05065$						
			PASS - Te	nsile strain exce	eds minimun	n required,		
Nominal moment capacity	$M_n = A_{sy.bot.pr}$	$M_{h} = A_{sy.bot,prov} \times f_{y} \times (d - a / 2) = 32.216 \text{ kip_ft}$						
Flexural strength reduction fact	$\phi_f = \min(\max)$	x(0.65 + (ε _t - 0.	002) × (250 / 3), (0.65), 0.9) = 0.	900			
Design moment capacity		$\varphi M_n = \varphi_f \times M$	l _n = 28.994 kip_	_ft				
		Mu.y.max / ϕM_r	n = 0.039					
		PAS	S - Design mo	ment capacity e	xceeds ultima	nte moment		
One-way shear design, y dire	ction							
Ultimate shear force		$V_{u.y} = 0.611$	kips					
Depth to reinforcement		$d_v = h - c_{nom} - \phi_{x,bot} - \phi_{y,bot} / 2 = 8.25$ in						
Shear strength reduction factor		$\varphi_{\prime}=\boldsymbol{0.75}$						
Nominal shear capacity (Eq. 22	$V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi}) \times L_x \times d_v} = 37.568 \text{ kips}$							
Design shear capacity	$\phi V_n = \phi_v \times V_n = 28.176 \text{ kips}$							
		$V_{u.y} / \phi V_n = 0$).022					

Depth to reinforcement	d _{v2} = 8.5 in
Shear perimeter length (22.6.4)	I _{xp} = 22.500 in
Shear perimeter width (22.6.4)	l _{yp} = 22.500 in
Shear perimeter (22.6.4)	$b_o = 2 \times (l_{x1} + d_{v2}) + 2 \times (l_{y1} + d_{v2}) = 90.000$ in
Shear area	$A_p = I_{x,perim} \times I_{y,perim} = \textbf{506.250} \text{ in}^2$
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{y1} = 310.250 \text{ in}^2$
Ultimate bearing pressure at center of shear area	q _{up.avg} = 1.354 ksf
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up,avg} \times A_p =$
	4.487 kips
Ultimate shear stress from vertical load	$v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 5.865 \text{ psi}$
Column geometry factor (Table 22.6.5.2)	$\beta = I_{y1} / I_{x1} = 1.00$
Column location factor (22.6.5.3)	α s =40
Concrete shear strength (22.6.5.2)	$v_{cpa} = (2 + 4 / \beta) \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 379.473 \text{ psi}$
	$v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 365.419 \text{ psi}$
	$v_{cpc} = 4 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 252.982 \text{ psi}$
	$v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 \text{ psi}$
Shear strength reduction factor	$\phi_{\prime} = 0.75$
Nominal shear stress capacity (Eq. 22.6.1.2)	$v_n = v_{cp} = 252.982 \text{ psi}$
Design shear stress capacity (8.5.1.1(d))	$\phi v_n = \phi_v \times v_n = $ 189.737 psi
	v _{ug} / φv _n = 0.031
F	PASS - Design shear stress capacity exceeds ultimate shear stress load

	Bohannan & Huston Engineering Spatial Data Advanced Technologies Bohannan Huston, Inc.	Project FT DEFIANCE	SEWER REPL	Job Ref.			
		Section FOOTING				Sheet no./rev. 7	
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date	
		•			4	1	1

