Bohannan 🛦 Huston

7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

May 3, 2022

Monica Redhouse Project Control Engineer/Estimator Navajo Engineering & Construction Authority (NECA) #1 Uranium Blvd, P.O. Box 969 Shiprock, NM 87420

Re: Ft. Defiance Sewer Line Arroyo Crossing Rehabilitation

Bohannan Huston, Inc. was asked to assess the existing gravity sewer line crossing and arroyo approximately 950 feet south and 875 feet west of the intersection of Kit Carson Drive and Indian Route 112 in Ft. Defiance, AZ. The existing elevated pipeline has been damaged and pier supports have failed in several locations.

We recommend the existing piping and pier supports be removed and replaced with new concrete piers and tamper-resistant, adjustable galvanized steel pipe support stanchions at approximately 30'-0" O.C. and new 316SS 8" diameter, schedule 40 pipe. The new piers should be 1'-2" x 1'-2" square columns, reinforced with (4) #7 vertical bars (at corners), and #3 ties at 8" O.C. TYP, bearing on a minimum 3'-0" x 3'-0" x 1'-0" thick foundation reinforced with (4) #4 bars each way top and bottom. See Detail 5 and structural calculations.

At the bank, the new pipe should bear on a new concrete block foundation. The foundation should be installed in the soil bank currently supporting the existing pipe, be $2'-0" \times 2'-0" \times 1'-0"$ thick minimum, and bear a minimum of 2'-6" below grade. The foundation should be reinforced with (3) #4 bars each way top and bottom. See Detail 6.

Installation of new piers should occur prior to pipeline section replacement, to minimize downtime for the pipeline. Where necessary for new pier installation, temporary shoring of the pipeline may be implemented to allow for removal of existing piers.

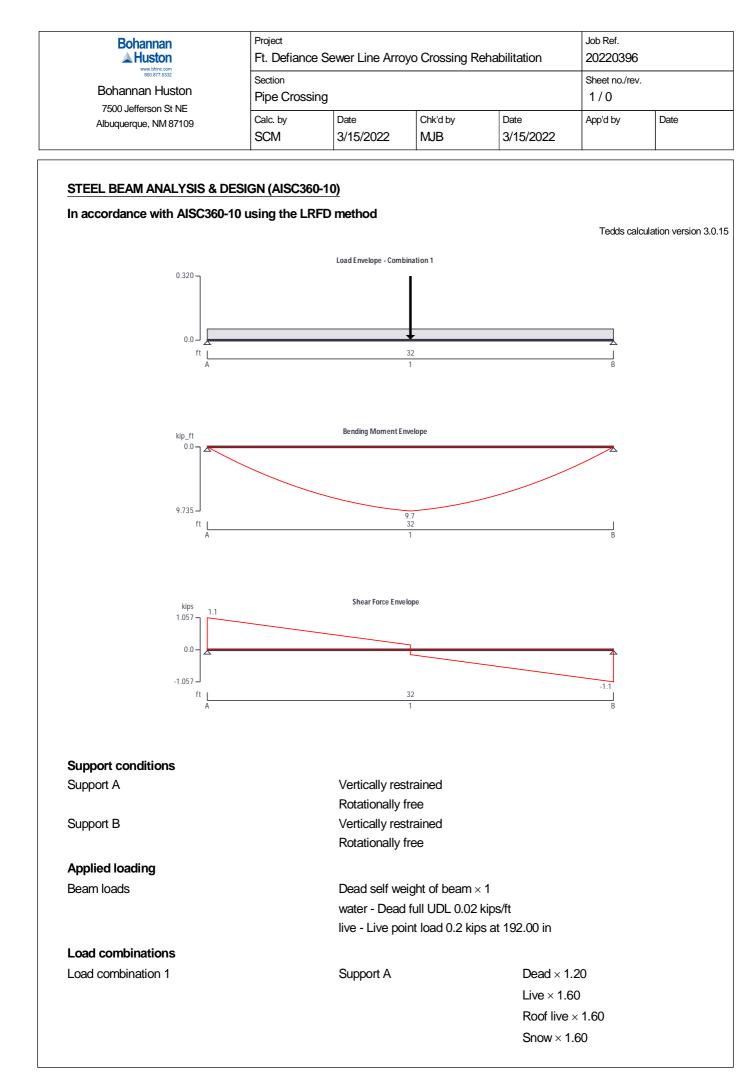
The new pipe should be connected to the existing pipe with a rigid connection such as a flanged connection (Class 150). A flanged connection can be installed to the existing pipe by field cutting and installing a Mega Flange Adaptor to the pipe end, this is the preferred method of connection. Alternately, the connection may also be made with the use of a dresser coupling as long as the two material types are electrically isolated from each other. This installation would still require the existing pipe to be field cut, but would also allow for field cutting of the new 316SS pipe, if necessary. Cradle support should be provided on both pipe end sections so as not to allow any deflection or stress at the connection between the two pipe ends.

Sincerely,

Nisa Rascon, PE Water Systems

NR/mjb/cm Enclosures

Matthew Bean


Matt Bean, PE Structural Engineering

Cody MacLake, El

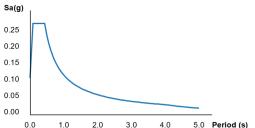
Cody MacLake, El Structural Engineering

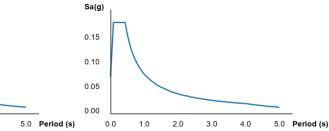
Engineering A Spatial Data A

Advanced Technologies

Bohannan Huston www.bhinc.com www.bhinc.com	Project Ft. Defiance	e Sewer Line Arro	yo Crossing R	ehabilitation	Job Ref. 20220396	
Bohannan Huston	Section Pipe Crossi	sing			Sheet no./rev. 2 / 0	
7500 Jefferson St NE Albuquerque, NM 87109	Calc. by SCM	Date 3/15/2022	Chk'd by MJB	Date 3/15/2022	App'd by	Date
				Dead × 1	.20	
				Live × 1.6	60	
				Roof live	× 1.60	
				Snow \times 1	.60	
		Support B		$Dead \times 1$.20	
				Live × 1.6	60	
				Roof live	× 1.60	
				Snow \times 1	.60	
Analysis results						
Maximum moment		M _{max} = 9.7 ki	ps_ft	$M_{min} = 0 \mathbf{k}$	•	
Maximum shear		V _{max} = 1.1 kij	DS	V _{min} = -1.	•	
Deflection		$\delta_{max} = 0.7$ in		δ _{min} = 0 ir		
Maximum reaction at support A		$R_{A_{max}} = 1.1 \text{ kips}$		R _{A_min} = 1	.1 kips	
Unfactored dead load reaction a		$R_{A_{Dead}} = 0.7 \text{ kips}$				
Unfactored live load reaction at Maximum reaction at support B		R _{A_Live} = 0.1 R _{B_max} = 1.1		R _{B_min} = 1	1 kine	
Unfactored dead load reaction a		R _{B_Dead} = 0.7		INB_min — I	. Nps	
Unfactored live load reaction at		$R_{B_{Live}} = 0.1$				
Section details						
Section type		Pipe STD x8	(AISC 15th E	Edn (v15.0))		
ASTM steel designation		A53 Gr.B				
Steel yield stress		F _y = 35 ksi				
Steel tensile stress		F _u = 60 ksi				
Modulus of elasticity		E = 29000 ks	Si			
		8.63"		5 ⁵		
Resistance factors Resistance factor for tensile yie Resistance factor for tensile rup	-	φ _{ty} = 0.90 φ _{tr} = 0.75				
	oture	$\phi_{ty} = 0.90$ $\phi_{tr} = 0.75$ $\phi_{c} = 0.90$				

	Project Ft. Defiance	e Sewer Line Arro	ehabilitation	20220396		
Bohannan Huston	Section Pipe Crossii	na		Sheet no./rev 3 / 0	<i>.</i>	
7500 Jefferson St NE	Calc. by	Date	Chk'd by	Date	App'd by	Date
Albuquerque, NM 87109	SCM	3/15/2022	MJB	3/15/2022		
Lateral bracing						
		Span 1 has o	continuous late	ral bracing		
Classification of sections for	local buckling -	Section B4.1				
Classification of section in fle	exure - Table B4	.1b (case 20)				
Width to thickness ratio		$D_{o} / t = 28.75$	5			
Limiting ratio for compact section	n	$\lambda_{pff}=0.07\times$	E / F _y = 58.00			
Limiting ratio for non-compact s	ection	$\lambda_{rff} = 0.31 \times I_{c}$	E / F _y = 256.86	Compact		
				S	Section is co	mpact in f
Design of members for shear	- Chapter G					
Required shear strength		Vr = max(abs	s(V _{max}), abs(V _{mi}	_{in})) = 1.057 kips		
Nominal shear strength - eq G6	-1		$x \times A / 2 = 82.42$			
Resistance factor for shear		φ _v = 0.90		·		
Design shear strength		·	= 74.183 kips			
		PAS	S - Design she	ear strength exce	eeds require	d shear stı
Design of members for flexur	e in the maior a		-	-	-	
Required flexural strength		-	s(M _{s1 max}), abs((M _{s1_min})) = 9.735	kips_ft	
Yielding - Section F8.1						
Nominal flexural strength for yie	ldina - ea F8-1	$M_{\text{byld}} = M_{\text{b}} =$	$F_{y} \times Z = 60.667$	kips ft		
Nominal flexural strength			60.667 kips_ft			
Design flexural strength			= 54.600 kips_	ft		
		PASS - I	Design flexura	l strength excee	ds required	flexural sti
Design of members for vertication	al deflection					
Consider deflection due to dead		nd snow loads				
Limiting deflection		$\delta_{\text{lim}} = L_{s1} / 18$	0 = 2.133 in			
Maximum deflection span 1		δ = max(abs	(δ _{max}), abs(δ _{min})) = 0.678 in		
		P	ASS - Maximui	m deflection doe	es not excee	d deflectio


Search Information



Site Class:

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
SS	0.173	MCE _R ground motion (period=0.2s)
S ₁	0.05	MCE _R ground motion (period=1.0s)
S _{MS}	0.277	Site-modified spectral acceleration value
S _{M1}	0.12	Site-modified spectral acceleration value
S _{DS}	0.185	Numeric seismic design value at 0.2s SA
S _{D1}	0.08	Numeric seismic design value at 1.0s SA

▼Additional Information

Name	Value	Description
SDC	В	Seismic design category
Fa	1.6	Site amplification factor at 0.2s
Fv	2.4	Site amplification factor at 1.0s
CRS	0.902	Coefficient of risk (0.2s)
CR ₁	0.93	Coefficient of risk (1.0s)
PGA	0.094	MCE _G peak ground acceleration
F _{PGA}	1.6	Site amplification factor at PGA
PGA _M	0.15	Site modified peak ground acceleration
ΤL	4	Long-period transition period (s)
SsRT	0.173	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.192	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.05	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.054	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

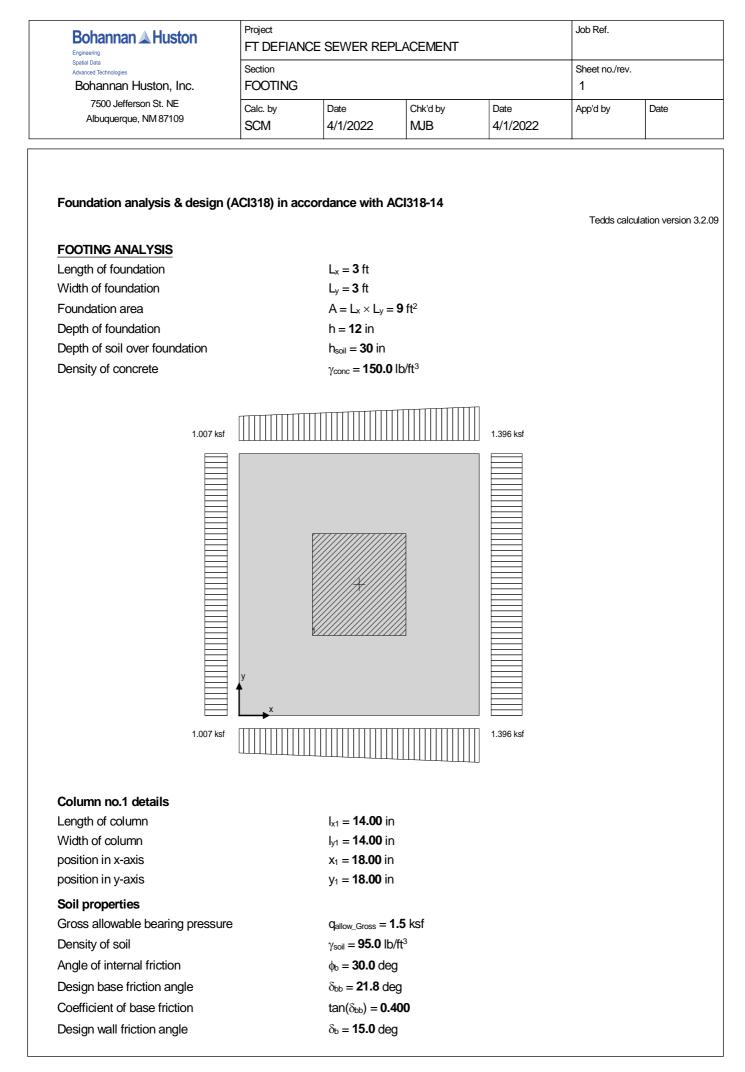
	Project FT DEFIAN	CE SEWER REF		Job Ref. 20220396			
Spatial Data Advanced Technologies 7500 Jeffereson St NE	Section				Sheet no./rev.		
Albuquerque, NM 87109	SEISMIC LO		1				
	Calc. by SCM	Date 4/6/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date	
SEISMIC FORCES (ASCE 7-10	<u>)</u>				Tedds cal	culation version 3	
Site parameters							
Site class		D					
Mapped acceleration parameter	s (Section 11.4.	1)					
at short period		S _S = 0.173					
at 1 sec period		S ₁ = 0.05					
Site coefficientat short period (T	able 11.4-1)	F _a = 1.600					
at 1 sec period (Table 11.4-2)		F _v = 2.400					
Spectral response acceleratio	n parameters						
at short period (Eq. 11.4-1)		$S_{MS} = F_a \times S_a$					
at 1 sec period (Eq. 11.4-2)		$S_{M1} = F_v \times S_v$	5 ₁ = 0.120				
Design spectral acceleration p	parameters (Se						
at short period (Eq. 11.4-3)			× S _{MS} = 0.185				
at 1 sec period (Eq. 11.4-4)		S _{D1} = 2 / 3 >	S _{M1} = 0.080				
Seismic design category Risk category (Table 1.5-1)		Ш					
This outegory (Tuble 1.0-1)							
Seismic design category based	on short period	response accele	ration (Table 1	1.6-1)			
Osismis desime sets much set d		В	······································	4.0.0			
Seismic design category based	on 1 sec period	B Response accele	eration (Table 1	1.6-2)			
Seismic design category		B					
Approximate fundamental per	iod						
Height above base to highest le		h _n = 8 ft					
From Table 12.8-2:							
Structure type		All other sys	stems				
Building period parameter Ct		Ct = 0.02					
Building period parameter x		x = 0.75					
	d (Eq 12.8-7)	$T_a = C_t \times (h_r)$.) ^x × 1sec / (1ft) [,]	[×] = 0.095 sec			
Approximate fundamental period	、 · · · · · /						
Approximate fundamental period Building fundamental period (Se	ct 12.8.2)	= _ = 0.0					
Approximate fundamental period Building fundamental period (Se Long-period transition period	ct 12.8.2)	T = T _a = 0.0 T∟ = 4 sec	30 300				
Building fundamental period (Se	ct 12.8.2)						
Building fundamental period (Se Long-period transition period		T∟ = 4 sec	Wall_Systems				
Building fundamental period (Se Long-period transition period Seismic response coefficient		T∟ = 4 sec A. Bearing_	Wall_Systems	crete shear walls			
Building fundamental period (Se Long-period transition period Seismic response coefficient	Table 12.2-1)	T∟ = 4 sec A. Bearing_	Wall_Systems	crete shear walls			
Building fundamental period (Se Long-period transition period Seismic response coefficient Seismic force-resisting system (Table 12.2-1) able 12.2-1)	T∟ = 4 sec A. Bearing_ 2. Ordinary	Wall_Systems	crete shear walls			
Building fundamental period (Se Long-period transition period Seismic response coefficient Seismic force-resisting system (Response modification factor (T	Table 12.2-1) able 12.2-1) e 1.5-2)	T∟ = 4 sec A. Bearing_ 2. Ordinary R = 4	Wall_Systems	crete shear walls			
Building fundamental period (Se Long-period transition period Seismic response coefficient Seismic force-resisting system (Response modification factor (T Seismic importance factor (Tabl	Table 12.2-1) able 12.2-1) e 1.5-2)	T∟ = 4 sec A. Bearing_ 2. Ordinary R = 4 I _e = 1.250	Wall_Systems				
Building fundamental period (Se Long-period transition period Seismic response coefficient Seismic force-resisting system (Response modification factor (T Seismic importance factor (Tabl Seismic response coefficient (Se	Table 12.2-1) able 12.2-1) e 1.5-2)	T _L = 4 sec A. Bearing_ 2. Ordinary R = 4 I _e = 1.250 C _{s_calc} = S _{DS}	Wall_Systems reinforced conc / (R / I _e) = 0.05				

Bohannan L Huston Engineering Batial Data Advanced Technologies 7500 Jeffereson St NE Albuquerque, NM 87109	Project FT DEFIANCE SEWER REPLACEMENT Section SEISMIC LOADING					Job Ref. 20220396 Sheet no./rev. 2	
	Seismic response coefficient		Cs = 0.0577				
Seismic base shear (Sect 12.8		\\/ − 1 0 kip	_				

Effective seismic weight of the structureW = 1.0 kipsSeismic response coefficient $C_s = 0.0577$ Seismic base shear (Eq 12.8-1) $V = C_s \times W = 0.1$ kips

PROJECT NAME	SHEET	OF
PROJECT NO	BY	DATE
SUBJECT	CH'D	DATE

Rohann	nan 🛦 Husto	00	Sheet No.	1	of	1
DUI Iai II	ian 🔺 i iusu		Project:	FT DEFIANCE S	EWER REPLACEMEN	IT
Courtyard I			Subject:	LOADS		
7500 Jeffersor	n St. NE		Client:	NECA	Job Number:	20220396
Albuquerque,			Prepared By:	SCM	Date:	4/1/2022
87109-4335			Checked By:	MJB	Date:	4/1/2021
	Dead Load					
	8 ft	Height of Column				
	2.700 k	Weight of Column				
	0.857 k	Weight of Pipe				
	0.800 k	Weight of Fluid				
	3.557 k	Total				
	Live Load					
	0.200 k	Weight of LL				
١	Wind Load					
F	0.005 k	Wind Load				
h/2+0.05h	4.400 ft	ASCE 7-10 Fig. 29.4-1				
	0.022 k-ft	Moment due to Wind				
Se	eismic Load					
Cs	0.058					
W	3.557 k					
V	0.20521 k	Seismic Base Shear				
V*h/2	0.82084	Seismic Moment				


	Project FT DEFIANCE SEWER REPLACEMENT					Job Ref.	
Spetiel Data Advanced Technologies Bohannan Huston, Inc.	Section SUPPORT PIER DESIGN				Sheet no./rev. 1		
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date	

RC RECTANGULAR COLUMN DESIGN (ACI318-14)

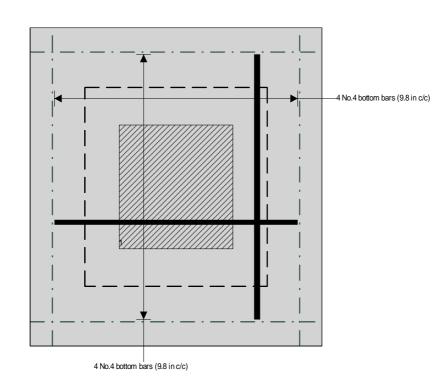
RC RECTANGULAR COLUMN DESIGN (ACI318	
	Tedds calculation version 2.2.02
У	
	4 × No. 7 longitudinal bars No. 3 ties @ 14 in c/c
Applied loads	
Ultimate axial force acting on column	P _{u_act} = 10 kips
Ultimate moment about major (X) axis	M _{ux_act} = 10 kips_ft
Geometry of column	
Depth of column (larger dimension of column)	h = 14.0 in
Width of column (smaller dimension of column)	b = 14.0 in
Clear cover to reinforcement (both sides)	c _c = 1.5 in
Unsupported height of column about x axis	l _{ux} = 7.0 ft
Effective height factor about x axis	k _x = 1.00
Column state about the x axis	Unbraced
Unsupported height of column about y axis	l _{uy} = 7.0 ft
Effective height factor about y axis	k _y = 1.00
Column state about the y axis	Unbraced
Check on overall column dimensions	
	Column dimensions are OK - h < 4b
Reinforcement of column	
Numbers of bars of longitudinal steel	N = 4
Longitudinal steel bar diameter number	D _{bar_num} = 7
Diameter of longitudinal bar	D _{long} = 0.875 in
Stirrup bar diameter number	D _{stir_num} = 3
Diameter of stirrup bar	D _{stir} = 0.375 in
Specified yield strength of reinforcement	fy = 60000 psi
Specified compressive strength of concrete	ť°c = 4000 psi
Modulus of elasticity of bar reinforcement	E _s = 29 × 10 ⁶ psi
Modulus of elasticity of concrete	E _c = 57000 × f' _c ^{1/2} × (1psi) ^{1/2} = 3604997 psi

Bohannan 🛦 Huston	Project FT DEFIAN	ICE SEWER RE	Job Ref.			
Spatial Data Advanced Technologies	Section		Sheet no./rev			
Bohannan Huston, Inc.	SUPPORT	PIER DESIGN			2	
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date
Yield strain		$\varepsilon_y = f_y / E_s =$	0.00207			
Ultimate design strain		ε _c = 0.003 ii	n/in			
Check for minimum area of ste	el - 10.6.1.1					
Gross area of column		$A_g = h \times b =$	196.000 in ²			
Area of steel		$A_{st} = N \times (\tau$	$t \times D_{long^2}) / 4 = 2$	2.405 in ²		
Minimum area of steel required		A _{st_min} = 0.0	1× A _g = 1.960 ir	1 ²		
				Ast> Ast_min,	PASS- Minim	um steel chec
Check for maximum area of ste	el - 10.6.1.1					
Permissible maximum area of ste	el	$A_{st max} = 0.0$	8× A _g = 15.680	in ²		
		_	U U		PASS - Maxin	num steel cheo
Slenderness check about x axi	\$					
Radius of gyration	-	$r_x = 0.3 \times h$	= 4 . 2 in			
Actual slenderness ratio		$s_{rx act} = k_x \times$				
Actual siendemess failo		-		an 22, slendern	ass affacts m	av be nealect
Claudamaaa ahaak ahautu avi	_	olenaemess	1410 13 1633 11	un 22, sichacht		ay be negreet
Slenderness check about y axis	5	0.0	4 0 ·			
Radius of gyration		$r_y = 0.3 \times b$				
Actual slenderness ratio		$s_{ry_{act}} = k_y \times$. .	
		Slenderness	ratio is less th	an 22, slendern	ess effects m	ay be neglect
Axial load capacity of axially lo	aded column					
Strength reduction factor		φ = 0.65				
Area of steel on compression fac	e	$A'_s = A_{st} / 2$				
Area of steel on tension face		$A_s = A_{st} / 2 =$			0.40.004 L ·	
Net axial load capacity of column				A_{st}) + $f_y \times A_{st}$) =	642.031 kips	
Ultimate axial load capacity of co	umn	$P_u = \phi \times P_n =$	417.320 kips	5400.0	- I	
				PASS : C	olumn is safe	in axial loadii
Uniaxially loaded column about	t major axis					
Details of column cross-section	n					
		r _{xb} = 0.188				
c/dt ratio		$d' = c_c + D_{st}$	_{ir} + (D _{long} /2) = 2 .	.313 in		
Effective cover to reinforcement						
Effective cover to reinforcement Spacing between bars		s = ((h – (2>	<d'))) ((n="" 2)-1)<="" td=""><td>= 9.375 in</td><td></td><td></td></d')))>	= 9.375 in		
Effective cover to reinforcement Spacing between bars Depth of tension steel		s = ((h – (2) d _t = h - d' =	11.687 in	= 9.375 in		
Effective cover to reinforcement Spacing between bars Depth of tension steel Depth of NA from extreme compr		$s = ((h - (2x)))$ $d_t = h - d' = $ $c_x = r_{xb} \times d_t$	11.687 in	= 9.375 in		
Effective cover to reinforcement Spacing between bars Depth of tension steel Depth of NA from extreme compr Factor of depth of compressive st	ress block	s = $((h - (2)))$ d _t = h - d' = c _x = r _{xb} × d _t β_1 = 0.850	11.687 in = 2.196 in			
Effective cover to reinforcement Spacing between bars Depth of tension steel Depth of NA from extreme compr Factor of depth of compressive st Depth of equivalent rectangular s	ress block	s = $((h - (2)))$ d _t = h - d' = c _x = r _{xb} × d _t β_1 = 0.850 a _x = min((β_1	11.687 in = 2.196 in × c _x), h)= 1.866			
Effective cover to reinforcement Spacing between bars Depth of tension steel Depth of NA from extreme compr Factor of depth of compressive st	ress block	$s = ((h - (2)))$ $d_t = h - d' = c_x = r_{xb} \times d_t$ $\beta_1 = 0.850$ $a_x = min((\beta_1 + \epsilon_{sx}) = f_y / E_s = f_y / E_$	11.687 in = 2.196 in × c _x), h)= 1.866			
Effective cover to reinforcement Spacing between bars Depth of tension steel Depth of NA from extreme compr Factor of depth of compressive st Depth of equivalent rectangular s	ress block	s = $((h - (2)))$ d _t = h - d' = c _x = r _{xb} × d _t β_1 = 0.850 a _x = min((β_1	11.687 in = 2.196 in × c _x), h)= 1.866			
Effective cover to reinforcement Spacing between bars Depth of tension steel Depth of NA from extreme compr Factor of depth of compressive st Depth of equivalent rectangular s Yield strain in steel	ress block	$s = ((h - (2)))$ $d_t = h - d' = c_x = r_{xb} \times d_t$ $\beta_1 = 0.850$ $a_x = min((\beta_1 + \epsilon_{sx}) = f_y / E_s = f_y / E_$	11.687 in = 2.196 in × c _x), h)= 1.866			
Effective cover to reinforcement Spacing between bars Depth of tension steel Depth of NA from extreme compr Factor of depth of compressive si Depth of equivalent rectangular s Yield strain in steel Strength reduction factor	ress block	$s = ((h - (2)))$ $d_t = h - d' = c_x = r_{xb} \times d_t$ $\beta_1 = 0.850$ $a_x = min((\beta_1 + \epsilon_{sx}) = f_y / E_s = f_y / E_$	11.687 in = 2.196 in × c _x), h)= 1.866			

Bonannan A Huston	roject T DEFIANCE SEWER REPLACEMENT				Job Ref.	
Advanced roomologics	ection UPPORT I	PIER DESIGN			Sheet no./rev. 3	
Albuquorquo NM 87100	alc. by CM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date
Moment carried by concrete						
Moment carried by concrete		M _{xcon} = P _{xcor}	$_{\rm h} imes$ ((h/2) – (a _x /2	?)) = 44.914 kip_f	t	
Details of steel layer 1						
Depth of layer		x _{x1} = 2.313	in			
Strain of layer		$\varepsilon_{x1} = \varepsilon_c \times (1$	- x _{x1} / c _x) = -0.0	0016		
Stress in layer		σ _{x1} = max(-*	$I \times f_y, E_s \times \epsilon_{x1}$) =	4626.39 psi		
Force carried by layer		$P_{x1} = N_x \times A$	$bar \times \sigma_{x1} = -5.50$	64 kips		
Moment carried by steel layer		$M_{x1} = P_{x1} \times$	((h / 2) - x _{x1}) = -	2.173 kip_ft		
Details of steel layer 2						
Depth of layer		x _{x2} = 11.688	in in			
Strain of layer		$\varepsilon_{x2} = \varepsilon_c \times (1)$	- x _{x2} / c _x) = -0.0	1297		
Stress in layer		$\sigma_{x2} = max(-2)$	$1 \times f_{y}, E_s \times \varepsilon_{x2}$ =	-60000.00 psi		
Force carried by layer		$P_{x2} = N_x \times A$	$bar \times \sigma_{x2} = -72.2$	158 kips		
Moment carried by steel layer		$M_{x2} = P_{x2} \times$	((h / 2) - x _{x2}) = 2	28.187 kip ft		
Force carried by steel						
Sum of forces by steel		P _{xs} = -77.7	kips			
Total force carried by column						
Nominal axial load strength		P _{nx} = 11.11	7 kins			
Strength reduction factor		$\phi_{x} = 0.900$	r kips			
Ultimate axial load carrying capacity of	of column		P _{nx} = 10.005 kip)S		
Total moment carried by column Total moment carried by column		M _{ox} = 70.92	99 kin ft			
Ultimate moment strength capacity of	oolumn		l _{ox} = 63.835 kip_	fi		
			lox - 03.03361p_	_n		
Check load capacity for uniaxial loa	ads about					
Factored axial load		P _{u_act} = 10 k				
Ultimate axial capacity		P _{ux} = 10 kip		ate axial capacit	v ovcoods fac	torod avial l
Factored moment about x axis		M _{ux_act} = 10			J UNUCCUS IAU	
Ultimate moment capacity about the >	< axis	M _{ux} = 63.8 k				
, ,				pacity exceeds f	actored mom	ent about x a
Design of column ties - 25.7.2						
Spacing of lateral ties		s _{v_ties} = 14.0	00 in			
16 times longitudinal bar diameter		s_{v1} = 16 $ imes$ D	_{long} = 14.000 in	I		
48 times tie bar diameter		$s_{v2} = 48 \times D$	_{stir} = 18.000 in			
Least column dimension		s _{v3} = min (h	,b) = 14.000 in			
Required tie spacing		s = min(s _{v1} ,	s _{v2} ,s _{v3}) = 14.00	0 in		
						sv_ties < s PA

Bohannan A Huston	Project FT DEFIAN	ICE SEWER REF	PLACEMENT		Job Ref.	
Spatial Data Advanced Technologies Bohannan Huston, Inc.	Section FOOTING					
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date
Horizontal acceleration factor		K _h = 0.4				
Vertical acceleration factor		$K_v = 0$				
Acceleration coefficient	$\theta = \operatorname{atan}(K_{h})$	(1 - K _v)) = 21.	801			
Passive pressure coefficient (Co	$K_P = sin(90)$	- φ _b)² / (sin(90 +	⊦ δ _b) × [1 - √[sin(φ	$_{b}$ + δ_{b}) × sin(ϕ_{b}) / (sin(90 +	
		$\delta_{b}))]]^{2}) = 4.9$	77			
Passive dynamic pressure coef	ficient (M-O)	$K_{PE} = 0 = 0$				
Self weight		$F_{swt} = h \times \gamma_{cc}$	_{nc} = 150 psf			
Soil weight		$F_{soil} = h_{soil} \times f$	γ _{soil} = 237.5 psf	:		
Column no.1 loads						
Dead load in z		F _{Dz1} = 6.0 ki	ps			
Live load in z		F _{Lz1} = 0.5 kij	os			
Wind load in x		F _{Wx1} = 0.0 k	ps			
Seismic load in x		F _{Ex1} = 0.3 ki	os			
Wind load moment in x		M _{Wx1} = 0.0 k	ip_ft			
Seismic load moment in x		M _{Ex1} = 1.0 ki	p_ft			
Footing analysis for soil and	stability					
Load combinations per ASCE	7-10					
1.0D (0.703)						
1.0D + 1.0L (0.740)						
1.0D + 1.0Lr (0.703)						
1.0D + 1.0S (0.703)						
1.0D + 1.0R (0.703)						
1.0D + 0.75L + 0.75Lr (0.731)						
1.0D + 0.75L + 0.75S (0.731)						
1.0D + 0.75L + 0.75R (0.731)						
1.0D + 0.6W (0.706)	21)					
$(1.0 + 0.14 \times S_{DS})D + 0.7E$ (0.93) 1.0D + 0.75L + 0.75Lr + 0.45W	•					
1.0D + 0.75L + 0.75S + 0.45W	. ,					
1.0D + 0.75L + 0.75R + 0.45W	· · · ·					
$(1.0 + 0.10 \times S_{DS})D + 0.75L + 0$. ,	0.898)				
0.6D + 0.6W (0.425)		/				
$(0.6 - 0.14 \times S_{DS})D + 0.7E (0.45)$	3)					
Combination 10 results: (1.0 -		+ 0.7E				
Forces on foundation	-20,2					
Force in x-axis		$F_{dx} = \gamma_E \times F_E$	_{v1} = 0.2 kips			
Force in z-axis		-		· γ _D × F _{Dz1} = 10.8	kips	
Moments on foundation						
Moment in x-axis, about x is 0		$M_{\rm He} = v_{\rm D} \times II$	$X \times (F_{cut} + F_{col})$	× L _x / 2) + γ _D × (Fι	ע + ער × א ין × איר א	
1000000000000000000000000000000000000		r = r = r = r = r = r		·· •× · • / · / · / · / · / · / · / · / · / ·		VINEXT I EX1
		= 17.1 kip_f	t			

Bohannan A Huston	Project FT DEFIAN	NCE SEWER REF		Job Ref.					
Spatial Data Advanced Technologies Bohannan Huston, Inc.	Section FOOTING					Sheet no./rev. 3			
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date			
Uplift verification									
Vertical force		F _{dz} = 10.816	3 kips						
				PASS - Four	ndation is not	subject to up			
Stability against overturning i	n x direction,	moment about x	is L _x						
Overturning moment		$M_{OTxL} = \gamma_E \times$	$(M_{Ex1}+F_{Ex1} \times h)$	= 0.87 kip_ft					
Resisting moment		M _{RxL} = −1 × 0 kip_ft	$\gamma_{D} \times (A \times (F_{swt} -$	+ F _{soil}) × L _x / 2)) +	$\gamma_{D} \times (F_{Dz1} \times (X))$	₁ - L _x)) = -16.2			
Factor of safety		abs(M _{RxL} / N	N _{OTxL}) = 18.541						
		PASS - Over	turning mome	nt safety factor	exceeds the I	minimum of 1			
Stability against sliding									
Resistance due to base friction		$F_{RFriction} = m_{i}$	$ax(F_{dz}, 0 \text{ kN}) \times 10^{-1}$	$tan(\delta_{bb}) = 4.326 ext{ k}$	ips				
Stability against sliding in x d	irection								
Resistance from passive soil pro		$F_{R_{Pare}} = 0.5$	$\times K_{PF} \times (h^2 + 2)$	$2 \times h \times h_{\text{coil}} \times 1 \times 1$	γ _{soil} = 0.614 ki	DS			
Total sliding resistance		$F_{RxPass} = 0.5 \times K_{PE} \times (h^2 + 2 \times h \times h_{soil}) \times L_y \times \gamma_{soil} = 0.614 \text{ kips}$ $F_{Rx} = F_{RFridion} + F_{RxPass} = 4.94 \text{ kips}$							
Factor of safety		$abs(F_{Rx} / F_{dx}) = 28.23$							
, , , , , , , , , , , , , , , , , , ,				factor of safety	exceeds the I	minimum of 1			
Bearing resistance			-						
Eccentricity of base reaction									
Eccentricity of base reaction in a	k-axis	$e_{dx} = M_{dx} / F$	_{dz} - L _x / 2 = 0.9	71 in					
Eccentricity of base reaction in g	/-axis	$e_{dy} = M_{dy} / F$	_{dz} - L _y / 2 = 0 in						
Pad base pressures									
		$q_1 = F_{dz} \times (1$	$- 6 \times e_{dx} / L_x - 0$	$6 imes \mathbf{e}_{ ext{dy}}$ / L _y) / (L _x $ imes$: L _y) = 1.007 ks	sf			
		$q_2 = F_{dz} \times (1$	$q_2 = F_{dz} \times (1 - 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.007$ ksf						
		$q_3 = F_{dz} \times (1 + 6 \times e_{dx} / L_x - 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.396 \text{ ksf}$							
		$q_4 = F_{dz} \times (1 + 6 \times e_{dx} / L_x + 6 \times e_{dy} / L_y) / (L_x \times L_y) = 1.396 \text{ ksf}$							
Minimum base pressure		$q_{min} = min(q_1, q_2, q_3, q_4) = 1.007 \text{ ksf}$							
Maximum base pressure		$q_{max} = max(q_1, q_2, q_3, q_4) = 1.396$ ksf							
Allowable bearing capacity									
Allowable bearing capacity		$q_{allow} = q_{allow}$	_Gross = 1.5 ksf						
			$q_{max} / q_{allow} = 0.931$						
		PASS	Allowable be	aring capacity e	xceeds desig	n base press			
FOOTING DESIGN (ACI318)									
In accordance with ACI318-14									
Material details									
Compressive strength of concre	te	f'c = 4000 ps	si						
Yield strength of reinforcement		f _y = 60000 p							
Cover to reinforcement		C _{nom} = 3 in							
Concrete type		Normal weig	ght						
Concrete modification factor		$\lambda = 1.00$							
Column type		Concrete							


Bohannan 🛦 Huston	Project FT DEFIAI	NCE SEWER REF	PLACEMENT	Job Ref. Sheet no./rev. 4					
Spatial Data Advanced Technologies Bohannan Huston, Inc.	Section FOOTING								
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	App'd by	Date					
Load combinations per ASCE	7-10								
1.4D (0.038)									
1.2D + 1.6L + 0.5Lr (0.039)									
Combination 2 results: 1.2D +	1.6L + 0.5Lr								
Forces on foundation									
Ultimate force in z-axis		$F_{uz} = \gamma_D \times A$	× (Fswt + Fsoil) +	$\gamma_{D} \times F_{Dz1} + \gamma_{L} \times F$	- 1 ₇₁ = 12.2 kips	5			
			··· (• 3w. • • 30ii) •	10	121 - I - I - I - I - I - I - I - I - I -				
Moments on foundation Ultimate moment in x-axis, about	t v ic O	$M = \alpha + \chi (t)$		× L _x / 2) + γ _D × (F		(E			
	1 X 15 U	ivi _{ux} = γ _D × (<i>F</i> kip_ft	A×(Fswt + Fsoil)	× L _X / Z) + YD × (F	$Dz1 \times X1) + \gamma L \times$	$(\Gamma Lz_1 \times X_1) =$			
Ultimate moment in y-axis, about	t y is 0	• —	$A \times (F_{swt} + F_{soil})$	× L _y / 2) + γ _D × (F	Dz1 × y 1) + γL ×	$(F_{Lz1} \times y_1) = 2$			
Eccentricity of base reaction		. –							
Eccentricity of base reaction in x	-axis	$e_{ux} = M_{ux} / F$	$f_{uz} - L_x / 2 = 0$ in						
Eccentricity of base reaction in y			$L_{y}/2 = 0$ in						
Pad base pressures			·						
· · · · · · · · · · · ·		$q_{u1} = F_{uz} \times ($	1 - 6 × e _{ux} / L _x -	$6 \times e_{uv} / L_v) / (L_x)$	× L _v) = 1.354 k	sf			
				$\cdot 6 \times e_{uv} / L_v) / (L_x$.,				
				$\cdot 6 \times e_{uv} / L_v) / (L_x$					
				+ 6 × e _{uy} / L _y) / (L _x					
Minimum ultimate base pressure	;		qu1,qu2,qu3,qu4) =	, .					
Maximum ultimate base pressure			(q u1, q u2, q u3, q u4)						
		Shear diagram							
		4	,, (
0.6				0					
0									
		-4							
		Moment d'annes	v ovio (kie f	4)					
		Moment diagran	1, х ахіз (кір_ п 1.1	t)					
0				0					
0				0					
		3							
Moment design, x direction, po	ositive mome								
Ultimate bending moment		$M_{u.x.max} = 1.7$							
-	Tension reinforcement provided			4 No.4 bottom bars (9.8 in c/c)					
Tension reinforcement provided		$A_{sx,bot,prov} = 0.8 \text{ in}^2$							
Tension reinforcement provided Area of tension reinforcement pro-									
Tension reinforcement provided			$18 \times L_y \times h = 0.$	778 in ² of reinforcemen	(

	I FT DEFIANCE SEWER REPLACEMENT						
Auvaliced reclinologies	Section				Sheet no./rev		
,	FOOTING				5		
7500 Jefferson St. NE Albuquerque, NM 87109 SCM		Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date	
Maximum spacing of reinforcement (× h, 18 in) = 1				
Depth to topping reinforcement	F#			einforcement spa	acing exceeds	s actual sp	
Depth to tension reinforcement			$\phi_{x.bot} / 2 = 8.75$				
Depth of compression block			$_{1} \times 1_{y}$ / (0.85 × 1	' _c × L _y) = 0.392 in			
Neutral axis factor		β ₁ = 0.85					
Depth to neutral axis		$c = a / \beta_1 = 0$					
Strain in tensile reinforcement (8.3.3	3.1)	$\epsilon_t = 0.003 \times$	d/c-0.003=				
				nsile strain exce		n required,	
Nominal moment capacity				2) = 34.216 kip_1			
Flexural strength reduction factor		$\phi_f = \min(\max$	κ(0.65 + (ε _t - 0.6	002) × (250 / 3), (0.65), 0.9) = 0 .	900	
Design moment capacity		$\phi M_n = \phi_f \times M$	n = 30.794 kip_	_ft			
		M _{u.x.max} / ϕ M _r	. = 0.036				
		PAS	S - Design mo	ment capacity e	xceeds ultima	te momen	
One-way shear design, x direction	n						
Ultimate shear force		V _{u.x} = 0.611	kips				
Depth to reinforcement		$d_v = h - c_{nom} - \phi_{x,bot} / 2 = 8.75$ in					
Shear strength reduction factor	$\Phi_{\rm v}=0.75$						
Nominal shear capacity (Eq. 22.5.5.	1)	$V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} \times L_v \times d_v = 39.845 \text{ kips}$					
Design shear capacity	')		n = 29.884 kips	2	apo		
Design shear capacity			•	•			
		$V_{u.x} / \phi V_n = 0$			· overede ulti	mata ahaa	
			-	n shear capacity	exceeds uiti	mate snea	
		Shear diagram	, y axis (kips)				
		4					
0.6				0			
0				0			
		-4					
	1	Moment diagran	n, y axis (kip f	t)			
	-		1.1				
0				0			
~				0			
		3					
Moment design, y direction, positi	ive momer	nt					
Ultimate bending moment		Mu.y.max = 1. 1	1 2 kip_ft				
Tension reinforcement provided		4 No.4 bottom bars (9.8 in c/c)					
Area of tension reinforcement provid	led	$A_{sy.bot.prov} = C$).8 in ²				
Area or tension removement provid	1 1)	$\Delta = 0.00$	$18 \times L_x \times h = 0$.778 in ²			
Minimum area of reinforcement (8.6.	. 1. 1)	$A_{\rm s.min} = 0.00$	$10 \land L_X \land 11 = 0$				
	. 1. 1)	∕ns.min — 0.00		of reinforcemen	t provided ex	ceeds min	

Bohannan 🛦 Huston	Project FT DEFIAN	ICE SEWER REF	Job Ref.					
Spatial Data Advanced Technologies	Section				Sheet no./rev.	Sheet no./rev.		
Bohannan Huston, Inc.	FOOTING				6			
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date		
	P	ASS - Maximum J	permissible re	einforcement spa	acing exceeds	actual spa		
Depth to tension reinforcement		d = h - c _{nom} -	ф _{х.bot} - ф _{у.bot} / 2	:= 8.250 in	-			
Depth of compression block		a = A _{sy.bot.prov}	imes f _y / (0.85 $ imes$ f	' _c × L _x) = 0.392 in				
Neutral axis factor		$\beta_1 = 0.85$						
Depth to neutral axis		$\mathbf{c} = \mathbf{a} / \beta_1 = 0$	$c = a / \beta_1 = 0.461$ in					
Strain in tensile reinforcement (8.3.3.1)	$\epsilon_t = 0.003 \times d / c - 0.003 = 0.05065$						
			PASS - Tel	nsile strain exce	eds minimum	required, 0		
Nominal moment capacity		$M_n = A_{sy.bot.prov} \times f_y \times (d - a / 2) = 32.216 \text{ kip}_ft$						
Flexural strength reduction factor		$\phi_{f} = min(max(0.65 + (\epsilon_{t} - 0.002) \times (250 / 3), 0.65), 0.9) = 0.900$						
Design moment capacity		$\phi M_n = \phi_f \times M_n = \textbf{28.994 kip_ft}$						
		$M_{u.y.max} / \phi M_n = 0.039$						
		PASS	6 - Design mo	ment capacity e	xceeds ultima	te moment l		
One-way shear design, y dire	ction							
Ultimate shear force		$V_{u.y} = 0.611$	kips					
Depth to reinforcement		$d_v = h - c_{nom} - \phi_{x.bot} - \phi_{y.bot} / 2 = 8.25$ in						
Shear strength reduction factor		$\phi_{\prime} = 0.75$						
Nominal shear capacity (Eq. 22	5.5.1)	$V_n = 2 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi}) \times L_x \times d_v} = 37.568 \text{ kips}$						
Design shear capacity		$\phi V_n = \phi_v \times V_n = $ 28.176 kips						
		$V_{u.y} / \phi V_n = 0.022$						
			PASS - Desig	n shear capacity	/ exceeds ultir	mate shear l		
Two-way shear design at colu	umn 1							
Depth to reinforcement		d _{v2} = 8.5 in						
Shear perimeter length (22.6.4)	l _{xp} = 22.500 in							

Departo fermiorocinicita	
Shear perimeter length (22.6.4)	I _{xp} = 22.500 in
Shear perimeter width (22.6.4)	l _{yp} = 22.500 in
Shear perimeter (22.6.4)	$b_o = 2 \times (I_{x1} + d_{v2}) + 2 \times (I_{y1} + d_{v2}) = 90.000$ in
Shear area	$A_p = I_{x,perim} \times I_{y,perim} = \textbf{506.250 in}^2$
Surcharge loaded area	$A_{sur} = A_p - I_{x1} \times I_{y1} = 310.250 \text{ in}^2$
Ultimate bearing pressure at center of shear area	q _{up.avg} = 1.354 ksf
Ultimate shear load	$F_{up} = \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} + \gamma_D \times A_p \times F_{swt} + \gamma_D \times A_{sur} \times F_{soil} - q_{up.avg} \times A_p =$
	4.487 kips
Ultimate shear stress from vertical load	$v_{ug} = max(F_{up} / (b_o \times d_{v2}), 0 \text{ psi}) = 5.865 \text{ psi}$
Column geometry factor (Table 22.6.5.2)	$\beta = I_{y1} / I_{x1} = 1.00$
Column location factor (22.6.5.3)	α s =40
Concrete shear strength (22.6.5.2)	$v_{cpa} = (2 + 4 / \beta) \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 379.473 \text{ psi}$
	$v_{cpb} = (\alpha_s \times d_{v2} / b_o + 2) \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 365.419 \text{ psi}$
	$v_{cpc} = 4 \times \lambda \times \sqrt{(f_c \times 1 \text{ psi})} = 252.982 \text{ psi}$
	$v_{cp} = min(v_{cpa}, v_{cpb}, v_{cpc}) = 252.982 \text{ psi}$
Shear strength reduction factor	$\varphi_{v} = 0.75$
Nominal shear stress capacity (Eq. 22.6.1.2)	v _n = v _{qp} = 252.982 psi
Design shear stress capacity (8.5.1.1(d))	$\phi v_n = \phi_v \times v_n = $ 189.737 psi
	$v_{ug} / \phi v_n = 0.031$
	PASS - Design shear stress capacity exceeds ultimate shear stress load

	Project FT DEFIANCE SEWER REPLACEMENT					Job Ref.	
Spatial Data Advanced Technologies Bohannan Huston, Inc.	Section FOOTING					Sheet no./rev. 7	
7500 Jefferson St. NE Albuquerque, NM 87109	Calc. by SCM	Date 4/1/2022	Chk'd by MJB	Date 4/1/2022	App'd by	Date	

