Geotechnical Engineering and Pavement Design Report

N35(8)1,2,4 and N5045(1)1,2,4

Sweetwater, Arizona

Contract No. A16PC00088 Task Order No. A16PD00654 Project No. 65165267 February 13, 2017

Prepared for: United States Department of the Interior Bureau of Indian Affairs

Prepared by:

Terracon Consultants, Inc. Farmington NM & Tempe AZ

February 13, 2017

United States Department of the Interior Bureau of Indian Affairs Navajo Regional Office, Branch of Acquisition P.O. Box 1060 Gallup, New Mexico 87305

Attn: Ms. Ella Dempsey

Re: Geotechnical Engineering and Pavement Design Report Roadway Sampling and Testing N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona Contract No. A16PC00088 Task Order No. A16PD00654 Terracon Project No. 65165267

Dear Ms. Dempsey:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical and pavement engineering services for the above referenced project. These services were performed in general accordance with our proposal titled Proposal for Geotechnical and Pavement Engineering Services, Roadway Sampling and Testing, N35(8)1,2,4 and N5045(1)1,2,4, Sweetwater, Arizona (Terracon Proposal No. P69165033, Revision 1 dated August 18, 2016). This geotechnical engineering and pavement design report presents the results of the subsurface exploration and provides geotechnical and pavement engineering recommendations concerning the design and construction of pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

Kirk D. Jackson, E.I.T. Staff Geotechnical Engineer

APR Review: Donald R. Clark, P.E.

Copies to: Addressee (1 via email)

Ramon Padilla, P.E. Geotechnical Project Manager

Terracon Consultants, Inc. 4685 South Ash Avenue, Suite H-4, Tempe, Arizona 85282 P [480] 897-8200 F [480]-897-1133 terracon.com

TABLE OF CONTENTS

			Page				
1.0	INTRC	DUCTION	1				
2.0	PROJECT INFORMATION						
	2.1	Project Description	1				
	2.2	Site Description	1				
3.0	SUBS	URFACE CONDITIONS	2				
	3.1	Site Geology	2				
	3.2	Subsurface Soil Conditions	3				
	3.3	Seismic Refraction Survey	5				
	3.4	Field Electrical Resistivity Test Results	8				
	3.5	Corrosion Characteristics	10				
	3.6	Laboratory Test Results	10				
	3.7	Acceptable and Unacceptable Pavement Subgrade Soils	12				
	3.8	Earthwork Factors	13				
	3.9	Groundwater Conditions	17				
4.0	PAVE	MENT THICKNESS DESIGN	17				
	4.1	Design Traffic Analyses	17				
	4.2	Pavement Subgrade Parameters	18				
	4.3	Pavement Design Parameters	19				
	4.4	Pavement Thickness Design Recommendations	19				
	4.5	Life Cycle and Engineering Analyses of Pavement Alternatives	20				
	4.6	Preliminary Economic Evaluation of Pavement Alternatives	23				
	4.7	Recommended Pavement Alternative	25				
5.0	MATE	RIALS DESIGN	25				
	5.1	Materials Specifications	25				
	5.2	Site Preparation and Earthwork	26				
6.0	GENE	RAL COMMENTS	27				

Exhibit No.

Appendix A – Field Exploration

Site Vicinity Map	A-1
Site Plan and Boring Locations	A-2 through A-6
Field Exploration Description	A-7
Unified Soil Classification System	A-8
General Notes	A-9
Boring and Test Pit Logs	A-10 through A-75
Seismic Refraction Survey Results	A-S1A through A-S9

TABLE OF CONTENTS (cont.)

Exhibit No.

Appendix B – Laboratory Testing

Laboratory Test Description	B-1
Atterberg Limits Results	B-2 through B-5
Grain Size Distribution	B-6 through B-20
Moisture-Density Relationship	B-21 through B-42
Summary of Laboratory Results	B-43 through B-47
R-Value Test Results	B-48 through B-67
Corrosion Test Results	B-68 through B-79

Appendix C – Engineering and Design Calculations

Design Traffic Analysis	C-1
Design Resilient Modulus Analysis	C-2
Flexible Pavement Design Analysis	C-3
Pavement Life Cycle Cost Analysis	C-4 and C-5

List of Abbreviations

AASHTO	American Association of State Highway and Transportation
ABC	Aggregate Base Course
AC	Asphalt Concrete
ARAC	Asphalt-Rubber Asphalt Concrete
ADT	Average Daily Traffic
ADOT	Arizona Department of Transportation
ADWR	Arizona Department of Water Resources
ASTM	
-	
ESAL	Equivalent Single 18-kip Axle Loads
GI	AASHTO Group Index
M _R	Resilient Modulus
M _R	Resilient Modulus
M _R PI	Resilient Modulus Plasticity Index
M _R PI psi	Resilient Modulus Plasticity Index Pounds per square inch
M _R PI psi PSI	Plasticity IndexPounds per square inchPresent Serviceability Index.
M _R PI psi PSI	Plasticity IndexPounds per square inchPresent Serviceability Index.
M _R PI psi PSI R-Value	
M _R PI psi PSI R-Value	
M _R PI psi PSI R-Value SAMI	Resilient ModulusPlasticity IndexPounds per square inchPresent Serviceability IndexResistance ValueStrain Attenuating Membrane Interlayer
M _R PI psi PSI R-Value SAMI SN	Resilient ModulusPlasticity IndexPounds per square inchPresent Serviceability IndexResistance ValueStrain Attenuating Membrane InterlayerStructural Number
M _R PI PSI R-Value SAMI SN SPT	Resilient ModulusPlasticity IndexPounds per square inchPresent Serviceability IndexResistance ValueStrain Attenuating Membrane InterlayerStructural NumberStandard Penetration Test
M _R PI psi PSI R-Value SAMI SN SPT USCS	Resilient ModulusPlasticity IndexPounds per square inchPresent Serviceability IndexResistance ValueStrain Attenuating Membrane InterlayerStructural NumberStandard Penetration Test Unified Soil Classification System

Terracon

GEOTECHNICAL AND PAVEMENT DESIGN REPORT ROADWAY SAMPLING AND TESTING N35(8)1,2,4 AND N5045(1)1,2,4 SWEETWATER, ARIZONA

Contract No. A16PC00088, Task Order No. A16PD00654 Terracon Project No. 65165267 February 13, 2017

1.0 INTRODUCTION

This report presents the results of our geotechnical engineering and pavement design services performed for N35(8)1,2,4 and N5045(1)1,2,4 near Sweetwater, Arizona. The purpose of this project is to construct asphalt pavement on the existing unpaved roadways. The purpose of our engineering services is to provide information and geotechnical and pavement engineering recommendations relative to:

n	subgrade soil conditions	n	pavement design sections
n	earthwork	n	material specifications

Our geotechnical engineering scope of work for the subsurface exploration of this project included the following:

- n 54 test borings and 12 test pits (designated as B1 through B66)
- n 11 seismic refraction survey lines in anticipated cut areas
- n 17 field electrical resistivity survey lines at proposed corrugated steel pipe culverts

In addition, our geotechnical engineering services included laboratory testing, geotechnical and pavement engineering analyses, and the preparation of this report. The project Site Vicinity Map and Boring Locations diagrams along with the boring / test pit logs and seismic survey results are included in Appendix A of this report (as Exhibits A-1 through A-74 and A-S1A through A-S9).

The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included in Appendix B of this report. Descriptions of the field exploration and laboratory testing are included in their respective appendices. Design worksheets for the engineering analyses and pavement design are included in Appendix C.

PROJECT INFORMATION 2.0

2.1 **Project Description**

ITEM	DESCRIPTION				
Site Location	See the Site Vicinity Map, Exhibit A-1 in Appendix A.				
Site Layout	See the Site Vicinity Map and Boring Locations Plans, Exhibits A-1 through A-6 in Appendix A.				
Pavement	Evaluation of subgrade soil conditions and pavement design recommendations have been requested for the approximate 12.9 kilometers (8.0 miles) section of BIA Routes N35 and N5045.				
Design Information	kilometers (8.0 miles) section of BIA Routes N35 and N5045. The following traffic data was provided for the planned pavement thickness design on the project: n Existing ADT (2011): 238 n Annual Growth Rate: 2% n Percent Trucks: 1% n Percent Buses: 1% n Design Life: 20 years from 2016 Typical roadway widths: n n Driving Lane Width: 3.3 meters				
Grading	Based on the grading plans for BIA Route N35 provided with the RFP, minimal cuts and fills up to +/-1 meter are anticipated to achieve finished grades for a majority of the alignment, with sparse areas of cuts and fills up to approximately +/-6 meters. A grading plan was not available for BIA Route N5045 at the time of our report preparation.				

2.2 **Site Description**

ITEM	DESCRIPTION				
Location	The project is comprised of approximately 12.9 kilometers (8.0 miles) of proposed roadway improvements located in the vicinity of Sweetwater, Arizona. The proposed BIA Route N35 alignment begins at Station 21+441.45 and ends at Station 33+880.00, and this alignment length is approximately 12.4 kilometers (7.7 miles). The proposed BIA Route N5045 begins at Station 0+000.00 and ends at Station 0+503.02, and this alignment length is approximately 0.5 kilometers (0.3 miles).				
Existing Improvements	The project site consists of the existing unpaved BIA Routes N35 and N5045. Areas surrounding the existing roadways consist of relatively undeveloped land.				

N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

ITEM	DESCRIPTION
Current Ground Cover	The existing N35 and N5045 roadways consist of graded unpaved roads. The alignment of the proposed roadway improvements generally extends along the existing roads. However, some portions of the proposed alignment extend off of the existing road and onto native desert land.
Existing Topography	The existing topography is generally relatively flat with some changes in elevation due to existing washes and hills.

3.0 SUBSURFACE CONDITIONS

3.1 Site Geology

The project area is located in the Colorado Plateau physiographic province (¹Cooley, 1967) of the North American Cordillera (²Stern, et al, 1979) of the southwestern United States. The Colorado Plateau province is situated between the Rocky Mountains to the east, and the Basin and Range physiographic province to the southwest. Formed during middle and late Tertiary time (100 to 15 million years ago), the Colorado Plateau is characterized by alternating cliffs and slopes formed as a result of different rates of erosion on resistant and weak sedimentary rocks. Ledges, cliffs or rock benches formed of resistant beds of sandstone and limestone are separated by slopes, valleys, and badlands carved on the weaker intervening shaley strata. The entire province has similar rock formations, which have nearly horizontal bedding or which are inclined slightly to the southwest. The entire plateau drains to the Colorado River.

The physiographic features within the province are related to their distance from the Colorado River and to the amount of downcutting caused by erosional processes. In areas adjacent to the Colorado River, canyon lands are developed extensively. In the areas surrounding the canyon lands and in part of the uplands adjoining the canyon rims, rock terraces form a series of platforms and high cliffs that include Marble Platform, Coconino Plateau, Echo Cliffs, Black Mesa, and Defiance Plateau. In the southern part of the province beyond the belt of rock terraces, the relief is rather subdued and broad slopes and low mesa-like features predominate.

Specific geologic conditions along the alignment are described by the USGS as follows:

n The eastern portion of the alignment includes undivided Quaternary surficial deposits. This geologic unit is described as unconsolidated to strongly consolidated alluvial and eolian deposits. This unit includes: coarse, poorly sorted alluvial fan and terrace deposits on middle and upper piedmonts and along large drainages; sand, silt and clay on alluvial plains and playas; and wind-blown sand deposits.

¹ Cooley, M.E., 1967, *Arizona Highway Geologic Map*, Arizona Geological Society.

² Stern, C.W., et al, 1979, *Geological Evolution of North America*, John Wiley & Sons, Santa Barbara, California.

- n The center portion of the alignment includes the Morrison Formation. This geologic unit is described as commonly cliff-forming, cross-bedded sandstone lenses alternating with slope-forming siltstone, mudstone and shale. Colors are highly variable, and include greenish gray, reddish brown, pink, white, and purple. Sands were deposited by braided streams with finer sediment representing overbank or lacustrine deposits.
- n The western portion of the alignment includes the San Rafael Group. This geologic unit is described as commonly cross-bedded, ledge-forming sandstone and slope-forming siltstone. Rock typically has a striped red and white aspect. The Carmel Formation and Entrada Sandstone are prominent members of this group.

3.2 Subsurface Soil Conditions

Specific conditions encountered at each boring/test-pit location are indicated on the individual boring/test-pit logs included in Appendix A of this report. The project included 54 test borings and 12 test pits. Stratification boundaries on the boring/test-pit logs represent the approximate location of changes in soil types; in-situ, the transition between materials may be gradual. The results of the field and laboratory testing generally indicated similar subsurface conditions and similar engineering characteristics at the boring and test pit locations.

Based on conditions encountered in the borings, subsurface subgrade conditions for the majority of the alignment generally included deposits of silty sand, poorly graded sand with silt, and poorly graded sand with isolated occurrences of sandy lean clay, sandy silty clay, and sandy silt. Laboratory test results of samples obtained from the field exploration indicate the subgrade soil along the alignment mainly exhibited non-plastic to low plasticity characteristics. Field penetration test results indicate that the near surface subgrade soils had variable relative densities in the very loose to very dense range.

The AASHTO soil classification method was used to classify the site soils based on the results of the laboratory testing. The AASHTO soil classification included determining a soil Group Classification, Group Index (GI) values, and General Ratings as Subgrade. The AASHTO soil classification for each boring location is summarized in the following table:

SUBGRADE SOIL CLASSIFICATION								
Boring No.	Depth (m)	% Passing US No. 200 Sieve	Liquid Limit (LL)	Plasticity Index (PI)	USCS Classification	AASHTO Group Index	AASHTO Classification	AASHTO General Rating as Subgrade
B1	0 - 1.5	11	0	0	SP-SM	0	A-2-4	Excellent to Good
B2	0 - 1.5	54	34	12	CL	4	A-6	Fair to Poor
B3	0 - 1.5	38	0	0	SM	0	A-4	Fair
B4	0 - 1.5	19	0	0	SM	0	A-2-4	Excellent to Good
B5	0 - 1.5	23	0	0	SM	0	A-2-4	Excellent to Good

SUBGRADE SOIL CLASSIFICATION

Boring No.	Depth (m)	% Passing US No. 200 Sieve	Liquid Limit (LL)	Plasticity Index (Pl)	USCS Classification	AASHTO Group Index	AASHTO Classification	AASHTO General Rating as Subgrade
B5	1.5-1.8	16	0	0	SM	0	A-2-4	Excellent to Good
B6	0 - 1.5	10	0	0	SP-SM	0	A-3	Excellent to Good
B7	0 - 1.5	11	0	0	SP-SM	0	A-2-4	Excellent to Good
B8	0 - 1.5	15	0	0	SM	0	A-2-4	Excellent to Good
B9	0 - 1.5	8	0	0	SP-SM	0	A-3	Excellent to Good
B9	2.7-3.2	12	0	0	SP-SM	0	A-2-4	Excellent to Good
B10	0 - 1.5	34	0	0	SM	0	A-2-4	Excellent to Good
B11	0 - 1.5	15	0	0	SM	0	A-2-4	Excellent to Good
B12	0 - 1.5	14	0	0	SM	0	A-2-4	Excellent to Good
B13	0 - 1.5	17	0	0	SM	0	A-2-4	Excellent to Good
B14	0 - 1.5	16	0	0	SM	0	A-2-4	Excellent to Good
B15	0 - 1.5	9	0	0	SP-SM	0	A-3	Excellent to Good
B16	0 - 1.5	33	0	0	SM	0	A-2-4	Excellent to Good
B17	1.5 - 3	13	0	0	SM	0	A-2-4	Excellent to Good
B18	0 - 1.5	15	0	0	SM	0	A-2-4	Excellent to Good
B19	0 - 1.5	22	0	0	SM	0	A-2-4	Excellent to Good
B20	0 - 1.5	15	0	0	SM	0	A-2-4	Excellent to Good
B21	0 - 1.2	33	0	0	SM	0	A-2-4	Excellent to Good
B21	1.2-3.6	22	0	0	SM	0	A-2-4	Excellent to Good
B22	0 - 1.5	19	0	0	SM	0	A-2-4	Excellent to Good
B23	0 - 1.5	23	0	0	SM	0	A-2-4	Excellent to Good
B24	0.3-1.8	17	0	0	SM	0	A-2-4	Excellent to Good
B25	0 - 1.5	39	0	0	SM	0	A-4	Fair
B26	0 - 1.5	16	0	0	SM	0	A-2-4	Excellent to Good
B27	0 - 1.5	63	24	7	CL-ML	2	A-4	Fair
B28	0 - 1.5	3	0	0	SP	0	A-3	Excellent to Good
B29	0 - 1.5	16	0	0	SM	0	A-2-4	Excellent to Good
B30	0 - 1.5	12	0	0	SM	0	A-2-4	Excellent to Good
B31	0 - 1.5	18	0	0	SM	0	A-2-4	Excellent to Good
<u>B32</u>	0 - 1.5	16	0	0	SM	0	A-2-4	Excellent to Good
<u>B33</u>	0 - 1.5	14	0	0	SM	0	A-2-4	Excellent to Good
<u>B34</u>	0 - 0.9	17	0	0	SM	0	A-2-4	Excellent to Good
<u>B35</u>	0 - 1.5	12	0	0	SP-SM	0	A-2-4	Excellent to Good
B36	0 - 1.5	6	0	0	SP-SM	0	A-3	Excellent to Good
<u>B37</u>	0 - 1.5	19	0	0	SM	0	A-2-4	Excellent to Good
<u>B38</u>	0 - 1.5	7	0	0	SP-SM	0	A-3	Excellent to Good
<u>B39</u>	0 - 1.5	18	0	0	SM	0	A-2-4	Excellent to Good
<u>B40</u>	0 - 1.5	14	0	0	SM	0	A-2-4	Excellent to Good
B41	0 - 1.5	6	0	0	SP-SM	0	A-3	Excellent to Good
B42	0 - 1.5	19	0	0	SM	0	A-2-4	Excellent to Good
B43	0 - 1.5	19	0	0	SM	0	A-2-4	Excellent to Good
B44	0 - 1.5	14	0	0	SM	0	A-2-4	Excellent to Good

Geotechnical and Pavement Design Report

N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

SUBGRADE SOLE CEASSILICATION								
Boring No.	Depth (m)	% Passing US No. 200 Sieve	Liquid Limit (LL)	Plasticity Index (Pl)	USCS Classification	AASHTO Group Index	AASHTO Classification	AASHTO General Rating as Subgrade
B45	0 - 1.5	11	0	0	SP-SM	0	A-2-4	Excellent to Good
B46	0 - 1.5	14	0	0	SM	0	A-2-4	Excellent to Good
B47	0 - 1.5	24	0	0	SM	0	A-2-4	Excellent to Good
B48	0 - 1.2	17	0	0	SM	0	A-2-4	Excellent to Good
B48	1.2-2.7	32	0	0	SM	0	A-2-4	Excellent to Good
B49	0 - 1.5	50	0	0	ML	0	A-4	Fair
B49	2.4-3	30	0	0	SM	0	A-2-4	Excellent to Good
B50	0 - 1.5	24	0	0	SM	0	A-2-4	Excellent to Good
B51	0 - 1.5	4	0	0	SP	0	A-3	Excellent to Good
B52	0 - 1.5	6	0	0	SP-SM	0	A-3	Excellent to Good
B53	0 - 1.5	4	0	0	SP	0	A-3	Excellent to Good
B54	0 - 1.5	17	0	0	SM	0	A-2-4	Excellent to Good
B55	0 - 1.5	7	0	0	SP-SM	0	A-3	Excellent to Good
B56	0 - 1.5	6	0	0	SP-SM	0	A-3	Excellent to Good
B57	0 - 1.5	12	0	0	SP-SM	0	A-2-4	Excellent to Good
B58	0 - 1.5	4	0	0	SP	0	A-3	Excellent to Good
B59	0 - 1.5	11	0	0	SP-SM	0	A-2-4	Excellent to Good
B60	0 - 1.5	7	0	0	SP-SM	0	A-3	Excellent to Good
B61	0 - 1.5	21	0	0	SM	0	A-2-4	Excellent to Good
B62	0 - 1.5	11	0	0	SP-SM	0	A-2-4	Excellent to Good
B63	0 - 1.5	9	0	0	SP-SM	0	A-3	Excellent to Good
B64	0 - 1.5	6	0	0	SP-SM	0	A-3	Excellent to Good
B65	0 - 1.5	18	0	0	SM	0	A-2-4	Excellent to Good
B66	0 - 1.5	22	0	0	SM	0	A-2-4	Excellent to Good

SUBGRADE SOIL CLASSIFICATION

Based on the laboratory test results, the majority of the roadway subgrade soils classify as either types A-2-4 or A-3 based on the American Association of State Highway and Transportation Officials (AASHTO) soil classification system. As exceptions, the laboratory testing indicated isolated occurrences of soil types A-4 and A-6 as noted on the above table. Based on these classifications, the pavement subgrade materials are considered to generally have good to excellent support characteristics. Based on the AASHTO Group Index values, the subgrade soils are generally considered uniform along the alignment.

3.3 Seismic Refraction Survey

Due to anticipated roadway cuts, seismic refraction survey lines were performed at 9 locations along the proposed roadway alignment in order to further evaluate the subsurface soil/rock conditions. A total of 11 seismic refraction survey lines were performed with 1 line at each of the 9 locations along the alignment and a second transverse line at the location of Seismic Refraction Survey Lines S1 and S7. The seismic refraction survey lines were designated as S-1A, S-1B, S-2,

S-3, S-4, S-5, S-6, S-7A, S-7B, S-8, and S-9. The seismic refraction surveys were performed from October 17 through October 21, 2016 with a two-man crew equipped with a 24 channel seismograph, 12 geophones and a computer to record and to store field data. The spacing between geophones was set at 5 feet with a total line length of 60 feet. Forward, intermediate and reverse seismic traverses were performed along each of the survey lines at the site. Field data obtained was reduced with the SeisImager software program to generate appropriate time-distance curves. The seismograph equipment used for the seismic refraction survey was an ES-3000 manufactured by Geometrics. The approximate locations of the seismic survey lines are shown on Exhibits A-3 through A-6 in Appendix A.

The seismic refraction method of field exploration consists of measuring (at known points along the surface of the ground) the travel time of compressional waves (p-waves) generated by an impulsive energy source, recorded by a detector (geophone). The field data recorded consists of the time it takes the compressional wave to travel from the source to the detectors, and the distance between the detector and the source. Depending upon the hardness and depth of subsurface materials, the travel time of the compressional waves are shortened and refracted quicker as the material becomes harder with depth. One limitation of the seismic refraction method is that the rock layers must increase in density with depth in order to be mapped. While the method is ideally suited for determining the depth to bedrock, the method cannot image rock units of lower density that underlie higher density rock units.

The data obtained from our field exploration was evaluated and interpreted using Snell's law to determine the compressional wave velocities of each strata. From these interpretations, the depth to various strata was determined along the alignment of each of the traverses. The interpretation of the seismic survey line results are shown on Exhibits A-S1a through A-S9 in Appendix A.

The seismic refraction surveys were performed to help assess the excavation characteristics and/or the rippability of potentially shallow bedrock. The compressional wave velocities interpreted from the seismic surveys were compared to data published by Caterpillar (2000) in their Handbook of Ripping to estimate the rippability of the materials with standard Caterpillar equipment. Based upon the Caterpillar reference and our experience, we anticipate the following levels of excavation characteristics and/or rippability for the planned roadway cuts:

Test Line	Sub- surface Layer	Approx. Top Depth meters (ft)	Approx. Bottom Depth meters (ft)	Approx. P-Wave Velocity m/sec (ft/sec)	Anticipated Excavating Equipment and Rippability Based on a Caterpillar Ripper and Seismic Velocity*
S1A Parallel to	1	0	2.1 (7)	294 (966)	Conventional
Alignment, Approx. Sta.	2	2.1 (7)	5.2 (17)	681 (2,235)	Conventional for very dense soils
23+998	3	5.2 (17)		1,003 (3,292)	Rippable with CAT D8R/D8T

Test Line	Sub- surface Layer	Approx. Top Depth meters (ft)	Approx. Bottom Depth meters (ft)	Approx. P-Wave Velocity m/sec (ft/sec)	Anticipated Excavating Equipment and Rippability Based on a Caterpillar Ripper and Seismic Velocity*
S1B,	1	0	2.1 (7)	273 (895)	Conventional
Alignment,	2	2.1 (7)	5.2 (17)	619 (2,031)	Conventional for very dense soils
23+998	3	5.2 (17)		1,328 (4,357)	Rippable with CAT D8R/D8T
S2, Parallel to Alignment,	1	0	1.5 (5)	373 (1,223)	Conventional
Approx. Sta. 24+311	2	1.5 (5)		503 (1,650)	Conventional
S3, Parallel to Alignment,	1	0	1.8 (6)	367 (1,204)	Conventional
Approx. Sta. 24+449	2	1.8 (6)		475 (1,557)	Conventional
S4, Parallel to Alignment,	1	0	1.2 (4)	353 (1,158)	Conventional
Approx. Sta. 24+695	2	1.2 (4)		394 (1,292)	Conventional
S5, Parallel to Alignment,	1	0	2.1 (7)	375 (1,229)	Conventional
Approx. Sta. 24+850	2	2.1 (7)		493 (1,619)	Conventional
S6, Parallel to Alignment,	1	0	2.4 (8)	392 (1,286)	Conventional
Approx. Sta. 25+490	2	2.4 (8)		855 (2,804)	Rippable with CAT D8R/D8T
S7A,	1	0	1.2 (4)	444 (1,456)	Conventional
Alignment,	2	1.2 (4)	4.6 (15)	1,073 (3,521)	Rippable with CAT D8R/D8T
25+680	3	4.6 (15)		1,897 (6,225)	Rippable with CAT D8 to D9
S7B, Parallel to	1	0	1.5 (5)	504 (1,653)	Conventional
Alignment, Approx. Sta.	2	1.5 (5)	4 (13)	924 (3,030)	Rippable with CAT D8R/D8T
25+680	3	4 (13)		1,593 (5,228)	Rippable with CAT D8 to D9
S8, Parallel to Alignment,	1	0	1.5 (5)	417 (1,368)	Conventional
Approx. Sta. 30+423	2	1.5 (5)		737 (2,418)	Conventional for very dense soils

Geotechnical and Pavement Design Report

N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

Test Line	Sub- surface Layer	Approx. Top Depth meters (ft)	Approx. Bottom Depth meters (ft)	Approx. P-Wave Velocity m/sec (ft/sec)	Anticipated Excavating Equipment and Rippability Based on a Caterpillar Ripper and Seismic Velocity*
S9, Parallel to Alignment,	1	0	1.5 (5)	379 (1,245)	Conventional
Approx. Sta. 30+622	2	1.5 (5)		732 (2,403)	Conventional for very dense soils

3.4 Field Electrical Resistivity Test Results

From October 17 through October 21, 2016, a total of 17 field electrical resistivity surveys were performed in general accordance with ASTM Test Method G57, and IEEE Std. 81, using the Wenner Four-Electrode Method. The soil resistivity tests were performed at the locations identified on the attached Site Plan and Boring Locations diagrams, Exhibits A-2 through A-6. The Wenner arrangement (equal electrode spacing) was used with "a" spacings as shown in the table below. The "a" spacing is generally considered to be the depth of influence of the test.

Location	"a" spacing meters (feet)	Measured Resistance (ohms)	Average Resistivity (ohm-ft)	Average Resistivity (ohm-cm)
	0.6 (2)	19.8	249	7,580
RL-21+500	1.2 (4)	7.55	190	5,781
	1.8 (6)	5.83	220	6,696
	2.4 (8)	3.63	182	5,559
	0.6 (2)	22	276	8,422
RI -23+572	1.2 (4)	15.1	379	11,561
NL-20+072	1.8 (6)	12.3	463	14,126
	2.4 (8)	9.16	460	14,027
	0.6 (2)	37.6	472	14,394
RI -23+870	1.2 (4)	19.9	500	15,237
NE-23+070	1.8 (6)	12.3	463	14,126
	2.4 (8)	8.55	430	13,093
	0.6 (2)	32.6	409	12,480
RL-24+140	1.2 (4)	13.8	347	10,566
112-24+140	1.8 (6)	9.63	363	11,060
	2.4 (8)	6.48	326	9,923
	0.6 (2)	48.5	609	18,567
RL-24+370	1.2 (4)	17.4	437	13,322
NL-24+370	1.8 (6)	11.1	418	12,748
	2.4 (8)	7.5	377	11,485
RL-24+550	0.6 (2)	41.4	520	15,849

Results of the soil resistivity measurements are presented in the following table:

Location	"a" spacing meters (feet)	Measured Resistance (ohms)	Average Resistivity (ohm-ft)	Average Resistivity (ohm-cm)
	1.2 (4)	22.5	565	17,227
	1.8 (6)	12.5	471	14,356
	2.4 (8)	8.72	438	13,353
	0.6 (2)	57	716	21,821
DL 04.705	1.2 (4)	20.6	517	15,773
RL-24+733	1.8 (6)	14	528	16,079
	2.4 (8)	11.7	588	17,916
	0.6 (2)	45.3	569	17,342
DL 24,060	1.2 (4)	26.4	663	20,213
RL-24+900	1.8 (6)	20.9	788	24,003
	2.4 (8)	12	603	18,376
	0.6 (2)	52.5	659	20,099
	1.2 (4)	18.2	457	13,935
RL-25+115	1.8 (6)	10.6	399	12,174
	2.4 (8)	6.15	309	9,418
	0.6 (2)	7.48	94	2,864
	1.2 (4)	5.37	135	4,112
RL-24+250	1.8 (6)	2.08	78	2,389
	2.4 (8)	1.23	62	1,884
	0.6 (2)	26.3	330	10,068
DI 25,220	1.2 (4)	12.5	314	9,571
RL-20+320	1.8 (6)	7.41	279	8,510
	2.4 (8)	5.49	276	8,407
	0.6 (2)	36.9	463	14,126
	1.2 (4)	10.1	254	7,733
RL-20+000	1.8 (6)	4.48	169	5,145
	2.4 (8)	5.07	255	7,764
	0.6 (2)	52.8	663	20,213
PL-25+702	1.2 (4)	13.6	342	10,413
NL-23+792	1.8 (6)	8.34	314	9,578
	2.4 (8)	5.39	271	8,254
	0.6 (2)	24.2	304	9,264
	1.2 (4)	9.6	241	7,350
RL-25+010	1.8 (6)	4.25	160	4,881
	2.4 (8)	2.37	119	3,629
	0.6 (2)	42.6	535	16,309
PL-25+240	1.2 (4)	21.4	538	16,385
	1.8 (6)	14.8	558	16,998
	2.4 (8)	9.87	496	15,114
RL-25+180	0.6 (2)	35.8	450	13,705

Geotechnical and Pavement Design Report

N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

Location	"a" spacing meters (feet)	Measured Resistance (ohms)	Average Resistivity (ohm-ft)	Average Resistivity (ohm-cm)
	1.2 (4)	14.7	369	11,255
	1.8 (6)	7.88	297	9,050
	2.4 (8)	4.96	249	7,595
	0.6 (2)	41.5	521	15,887
RL-25+320	1.2 (4)	13.1	329	10,030
	1.8 (6)	8.97	338	10,302
	2.4 (8)	2.21	111	3,384

3.5 Corrosion Characteristics

Laboratory test results performed on on-site soils indicated soluble sulfate contents ranging from 25 to 330 parts per million (ppm) and chloride contents ranging from 25 to 208 ppm. As an exception, one isolated occurrence indicated a sulfate content of 2,420 ppm at the location of Boring B9. Based on the American Concrete Institute (ACI) Design Manual, Section 318, Chapter 4 (ACI 318), this concentration of sulfate is generally anticipated to result in a low sulfate exposure to concrete placed at the site. Therefore, American Society for Testing and Materials (ASTM) Type I/II portland cement is considered suitable for concrete along the project alignment.

Laboratory test results performed on on-site soils indicated saturated (minimum) resistivity values ranging from 1,077 to 7,566 ohm-centimeters, and pH values ranging from 8.2 to 9.9. These values in conjunction with the results of the sulfate and chloride testing should be used to determine potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction.

Refer to Appendix B, for the complete results of the corrosivity testing conducted on the site soils in conjunction with this geotechnical exploration. The corrosion information presented is specific to the samples tested. If the actual soils that will be in contact with the structures at the site are different than those tested, then additional corrosion testing should be performed. Terracon is not a corrosion engineer, and our scope of work was limited to performing corrosion laboratory tests on selected samples and presenting these results. A qualified corrosion engineer should be consulted if corrosion of underground utilities and structures is a concern.

3.6 Laboratory Test Results

A total of 45 expansion tests were performed on the subgrade samples. The expansion tests indicated the site soils exhibited a low expansion potentials. The samples tested either exhibited an expansion potential of less than 1.5% or exhibited collapse potentials of less than 1.5%. As exceptions, one test indicated an expansion potential of approximately 2.6% and one test indicated a collapse potential of approximately 2.9%. The overall expansion potential average of the samples tested was approximately 0%.

The results of the laboratory testing including the correlated R-Values (correlated in accordance with the ADOT Preliminary Engineering and Design Manual procedures) and tested R-Value are summarized in the following table:

	SUMMARY OF CORRELATED AND TESTED R-VALUES						
Boring No.	Depth Meters	LL	PI	-#200	R-Value Tested	R-Value Correlated	
B1	0 – 1.5	0	0	11		85.6	
B2	0 – 1.5	34	12	54	8.5	29.6	
B3	0 – 1.5	0	0	38	28.1	59.1	
B4	0 – 1.5	0	0	19		76.7	
B5	0 – 1.5	0	0	23		73.2	
B5	1.5 – 2	0	0	16		80.2	
B6	0 – 1.5	0	0	10		87.4	
B7	0 – 1.5	0	0	11		85.4	
B8	0 – 1.5	0	0	15	69	81.5	
B9	0 – 1.5	0	0	8		89.6	
B9	2.7 – 3.2	0	0	12		84.9	
B10	0 – 1.5	0	0	34	56	62.4	
B11	0 – 1.5	0	0	15		81.5	
B12	0 – 1.5	0	0	14		82.3	
B13	0 – 1.5	0	0	17		79.5	
B14	0 – 1.5	0	0	16		80.3	
B15	0 – 1.5	0	0	9		88.7	
B16	0 – 1.5	0	0	33	64	63.4	
B17	1.5 – 3	0	0	13		83.7	
B18	0 – 1.5	0	0	15		80.8	
B19	0 – 1.5	0	0	22	69	73.8	
B20	0 – 1.5	0	0	15		81.2	
B21	0 – 1.2	0	0	33	64	63.3	
B21	1.2 – 3.6	0	0	22		74.3	
B22	0 – 1.5	0	0	19		77.4	
B23	0 – 1.5	0	0	23		72.5	
B24	0.3 – 1.8	0	0	17		79.5	
B25	0 – 1.5	0	0	39	66	58.0	
B26	0 – 1.5	0	0	16		80.6	
B27	0 – 1.5	24	7	63	60	31.8	
B28	0 – 1.5	0	0	3		95.6	
B29	0 – 1.5	0	0	16		80.3	
B30	0 – 1.5	0	0	12		84.4	
B31	0 – 1.5	0	0	18	66	78.4	
B32	0 – 1.5	0	0	16		79.9	
B33	0 - 1.5	0	0	14		82.5	
B34	0-0.9	0	0	17	54	79.6	
B35	0 – 1.5	0	0	12		85.1	
B36	0 – 1.5	0	0	6		91.6	
B37	0 – 1.5	0	0	19		76.7	

Geotechnical and Pavement Design Report

N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

Boring No	Depth	Depth PI -#200				R-Value
Bornig No.	Meters			-#200	Tested	Correlated
B38	0 – 1.5	0	0	7		91.2
B39	0 – 1.5	0	0	18	59	78.2
B40	0 – 1.5	0	0	14		82.4
B41	0 – 1.5	0	0	6		91.5
B42	0 – 1.5	0	0	19		77.4
B43	0 – 1.5	0	0	19		76.6
B44	0 – 1.5	0	0	14	74	83.0
B45	0 – 1.5	0	0	11		85.3
B46	0 – 1.5	0	0	14		82.4
B47	0 – 1.5	0	0	24	71	71.5
B48	0 – 1.2	0	0	17		79.5
B48	1.2 – 2.7	0	0	32		64.7
B49	0 – 1.5	0	0	50		50.0
B49	2.4 – 3	0	0	30		65.8
B50	0 – 1.5	0	0	24	70	71.8
B51	0 – 1.5	0	0	4		94.1
B52	0 – 1.5	0	0	6		91.8
B53	0 – 1.5	0	0	4		95.1
B54	0 – 1.5	0	0	17	63	78.6
B55	0 – 1.5	0	0	7		90.9
B56	0 – 1.5	0	0	6		92.6
B57	0 – 1.5	0	0	12	77	85.2
B58	0 – 1.5	0	0	4		95.1
B59	0 – 1.5	0	0	11		85.7
B60	0 – 1.5	0	0	7		91.1
B61	0 – 1.5	0	0	21	42	74.3
B62	0 – 1.5	0	0	11		85.9
B63	0 – 1.5	0	0	9		88.5
B64	0 – 1.5	0	0	6		91.6
B65	0 – 1.5	0	0	18	27	77.6
B66	0 – 1.5	0	0	22	71	73.6

SUMMARY OF CORRELATED AND TESTED R-VALUES

3.7 Acceptable and Unacceptable Pavement Subgrade Soils

As previously mentioned, the pavement subgrade materials are considered to have good to excellent support characteristics along the majority of the proposed roadway alignment. As an exception, a few isolated occurrences of subgrade soils with fair to poor subgrade support characteristics were encountered at the locations of Borings B2, B27 and B49. Subgrade soils with fair to poor subgrade support characteristics are unsuitable (or unacceptable) for the support of the recommended pavement sections and should be over-excavated and removed from the top 3 feet of subgrade soils beneath proposed pavement areas. These unacceptable soils should be replaced with engineered (compacted) fill subgrade soils with good to excellent support characteristics. Based on ADOT criteria outlined in the Materials Preliminary Engineering and Design Manual, the following subgrade acceptance chart was developed to

outline acceptable and unacceptable subgrade soils based on soil strength (R-value) correlations. Based on the pavement design recommendations presented in this report, the following subgrade acceptance chart was prepared to assist during construction in identifying suitable (or acceptable) subgrade soils for the proposed roadway:

SUBGRADE ACCEPTANCE CHART

3.8 Earthwork Factors

Earthwork factors were estimated based on the results of the field density test results from both ring samples and from using a Troxler nuclear density gauge, as well as from past experience with similar soils. The shrinkage factors are based on a comparison of the in-situ dry densities from nuclear density test results to the density bulk samples compacted to 95 percent of the maximum dry density determined in accordance with standard Proctor criteria, ASTM D698.

Earthwork factors along with the results of our field and laboratory testing are presented in following table. The results indicate individual shrink/swell values which vary from about 20 percent shrink to 15 percent swell with an average value of approximately 6 percent shrink. Overall, 6 percent shrink is recommended for soils which are excavated and recompacted onsite to a minimum 95 percent of the maximum dry density determined by standard Proctor criteria. The shrink values would be anticipated to be slightly higher for any soils compacted to 100 percent of standard Proctor density.

Loc	ation	Field T	est	Lab	Lab Test			Shrink / Swell
Boring / Test	Sample Depth	Dry Density		Proct Dei	or Dry nsity	Density		Compaction
Pit No.	Meters	kg/m³	(pcf)	kg/m³	(pcf)	kg/m³	(pcf)	(%)
B1	0.6 - 0.9	1,618	(101)	1,780	(111.1)	1,691	(105.5)	4.3
B2	1.2 – 1.5	1,826	(114)	1,780	(111.1)	1,691	(105.5)	-8.0
B3	0.3 – 0.6	1,618	(101)	1,780	(111.1)	1,691	(105.5)	4.3
B4	1.5 – 1.8	1,538	(96)	1,831	(114.3)	1,739	(108.6)	11.6
B5	0.6 – 0.9	1,586	(99)	1,831	(114.3)	1,739	(108.6)	8.8
B6	1.5 – 1.8	1,506	(94)	1,831	(114.3)	1,739	(108.6)	13.4
B7	0.6 – 0.9	1,570	(98)	1,831	(114.3)	1,739	(108.6)	9.7
B8	1.5 – 1.8	1,842	(115)	1,802	(112.5)	1,712	(106.9)	-7.6
B9	0.3 – 0.6	1,682	(105)	1,802	(112.5)	1,712	(106.9)	1.8
B10	1.5 – 1.8	1,458	(91)	1,802	(112.5)	1,712	(106.9)	14.9
B11	0.3 – 0.6	1,426	(89)	1,802	(112.5)	1,712	(106.9)	16.7
B12	0 – 0.3	1,490	(93)	1,768	(110.4)	1,680	(104.9)	11.3
B12	0 – 0.3	1,554	(97)	1,768	(110.4)	1,680	(104.9)	7.5
B12	0.6 - 0.9	1,570	(98)	1,768	(110.4)	1,680	(104.9)	6.6
B12	0.6 – 0.9	1,490	(93)	1,768	(110.4)	1,680	(104.9)	11.3
B13	0.6 – 0.9	1,650	(103)	1,768	(110.4)	1,680	(104.9)	1.8
B14	1.5 – 1.8	1,570	(98)	1,653	(103.2)	1,570	(98.0)	0.0
B15	0 – 0.3	1,634	(102)	1,653	(103.2)	1,570	(98.0)	-4.0
B15	0 – 0.3	1,618	(101)	1,653	(103.2)	1,570	(98.0)	-3.0
B15	0.9 – 1.2	1,602	(100)	1,653	(103.2)	1,570	(98.0)	-2.0
B15	0.9 – 1.2	1,602	(100)	1,653	(103.2)	1,570	(98.0)	-2.0
B16	1.5 – 1.8	1,746	(109)	1,802	(112.5)	1,712	(106.9)	-2.0
B17	0 – 0.3	1,602	(100)	1,738	(108.5)	1,651	(103.1)	3.0
B17	0 – 0.3	1,586	(99)	1,738	(108.5)	1,651	(103.1)	4.0
B17	0.5 – 0.8	1,538	(96)	1,738	(108.5)	1,651	(103.1)	6.9
B17	0.5 – 0.8	1,554	(97)	1,738	(108.5)	1,651	(103.1)	5.9
B18	0-0.3	1,618	(101)	1,738	(108.5)	1,651	(103.1)	2.0
B18	0 - 0.3	1,618	(101)	1,738	(108.5)	1,651	(103.1)	2.0
B18	0.6 - 0.9	1,602	(100)	1,738	(108.5)	1,651	(103.1)	3.0
B18	0.6 - 0.9	1,618	(101)	1,738	(108.5)	1,651	(103.1)	2.0
B19	0-0.3	1,618	(101)	1,738	(108.5)	1,651	(103.1)	2.0

Loc	ation	Field 7	ſest	Lab	Test			Shrink / Swell
Boring / Test	Sample Depth	Dry Der	nsity	Proct Dei	tor Dry nsity	95% Pro Der	nsity	Compaction
PIt NO.	Meters	kg/m³	(pcf)	kg/m³	(pcf)	kg/m³	(pcf)	(%)
B19	0 – 0.3	1,586	(99)	1,738	(108.5)	1,651	(103.1)	4.0
B19	0.9 – 1.2	1,474	(92)	1,738	(108.5)	1,651	(103.1)	10.7
B19	0.9 – 1.2	1,474	(92)	1,738	(108.5)	1,651	(103.1)	10.7
B20	1.5 – 1.8	1,602	(100)	1,762	(110.0)	1,674	(104.5)	4.3
B21	0 – 0.3	1,554	(97)	1,762	(110.0)	1,674	(104.5)	7.2
B21	0 – 0.3	1,554	(97)	1,762	(110.0)	1,674	(104.5)	7.2
B21	0.8 – 1.1	1,458	(91)	1,762	(110.0)	1,674	(104.5)	12.9
B21	0.8 – 1.1	1,458	(91)	1,762	(110.0)	1,674	(104.5)	12.9
B22	0 – 0.3	1,602	(100)	1,762	(110.0)	1,674	(104.5)	4.3
B22	0-0.3	1,522	(95)	1,762	(110.0)	1,674	(104.5)	9.1
B22	0.6 - 0.9	1,506	(94)	1,762	(110.0)	1,674	(104.5)	10.0
B22	0.6 - 0.9	1,586	(99)	1,762	(110.0)	1,674	(104.5)	5.3
B23	0 – 0.3	1,634	(102)	1,762	(110.0)	1,674	(104.5)	2.4
B23	0 – 0.3	1,426	(89)	1,762	(110.0)	1,674	(104.5)	14.8
B23	0.5 – 0.8	1,426	(89)	1,762	(110.0)	1,674	(104.5)	14.8
B23	0.5 – 0.8	1,650	(103)	1,762	(110.0)	1,674	(104.5)	1.4
B24	0 – 0.3	1,522	(95)	1,877	(117.2)	1,783	(111.3)	14.7
B24	0 – 0.3	1,570	(98)	1,877	(117.2)	1,783	(111.3)	12.0
B25	0.6 - 0.9	1,538	(96)	1,794	(112.0)	1,704	(106.4)	9.8
B26	1.5 – 1.8	1,618	(101)	1,794	(112.0)	1,704	(106.4)	5.1
B27	0.6 - 0.9	1,730	(108)	1,794	(112.0)	1,704	(106.4)	-1.5
B28	1.5 – 1.8	1,570	(98)	1,794	(112.0)	1,704	(106.4)	7.9
B29	0.6 - 0.9	1,618	(101)	1,716	(107.1)	1,630	(101.7)	0.7
B30	1.5 – 1.8	1,570	(98)	1,716	(107.1)	1,630	(101.7)	3.7
B31	0.6 – 0.9	1,666	(104)	1,716	(107.1)	1,630	(101.7)	-2.2
B33	0.6 - 0.9	1,570	(98)	1,716	(107.1)	1,630	(101.7)	3.7
B35	0.6 - 0.9	1,746	(109)	1,879	(117.3)	1,785	(111.4)	2.2
B37	0.6 - 0.9	1,746	(109)	1,842	(115.0)	1,750	(109.3)	0.2
B39	0.6 - 0.9	1,458	(91)	1,842	(115.0)	1,750	(109.3)	16.7
B40	1.5 – 1.8	1,666	(104)	1,884	(117.6)	1,790	(111.7)	6.9
B42	1.5 – 1.8	1,634	(102)	1,884	(117.6)	1,790	(111.7)	8.7
B43	0.6 - 0.9	1,778	(111)	1,794	(112.0)	1,704	(106.4)	-4.3

Loc	cation	Field 1	ſest	Lab	Test	95% Proctor Dry Density		Shrink / Swell
Boring / Test	Sample Depth	Dry Dei	nsity	Proct Der	tor Dry nsity			Compaction
Pit No.	Meters	kg/m³	(pcf)	kg/m ³	(pcf)	kg/m ³	(pcf)	(%)
B45	0.6 - 0.9	1,778	(111)	1,794	(112.0)	1,704	(106.4)	-4.3
B46	1.5 – 1.8	1,634	(102)	1,799	(112.3)	1,709	(106.7)	4.4
B47	0 – 0.3	1,490	(93)	1,799	(112.3)	1,709	(106.7)	12.8
B47	0 – 0.3	1,362	(85)	1,799	(112.3)	1,709	(106.7)	20.3
B47	0.5 – 0.8	1,378	(86)	1,799	(112.3)	1,709	(106.7)	19.4
B47	0.5 – 0.8	1,490	(93)	1,799	(112.3)	1,709	(106.7)	12.8
B48	0 – 0.3	1,602	(100)	1,823	(113.8)	1,732	(108.1)	7.5
B48	0 – 0.3	1,602	(100)	1,823	(113.8)	1,732	(108.1)	7.5
B48	0.9 – 1.2	1,522	(95)	1,823	(113.8)	1,732	(108.1)	12.1
B48	0.9 – 1.2	1,522	(95)	1,823	(113.8)	1,732	(108.1)	12.1
B49	0 - 0.3	1,538	(96)	1,823	(113.8)	1,732	(108.1)	11.2
B49	0 – 0.3	1,538	(96)	1,823	(113.8)	1,732	(108.1)	11.2
B49	0.6 - 0.9	1,538	(96)	1,823	(113.8)	1,732	(108.1)	11.2
B49	0.6 - 0.9	1,538	(96)	1,823	(113.8)	1,732	(108.1)	11.2
B50	1.5 – 1.8	1,666	(104)	1,784	(111.4)	1,695	(105.8)	1.7
B51	0.6 - 0.9	1,810	(113)	1,784	(111.4)	1,695	(105.8)	-6.8
B52	1.5 – 1.8	1,634	(102)	1,784	(111.4)	1,695	(105.8)	3.6
B53	0.6 - 0.9	1,634	(102)	1,775	(110.8)	1,686	(105.3)	3.1
B54	1.5 – 1.8	1,602	(100)	1,775	(110.8)	1,686	(105.3)	5.0
B57	0.6 - 0.9	1,730	(108)	1,754	(109.5)	1,666	(104.0)	-3.8
B59	0.6 - 0.9	1,922	(120)	1,754	(109.5)	1,666	(104.0)	-15.4
B63	0.6 - 0.9	1,650	(103)	1,828	(114.1)	1,736	(108.4)	5.0
B65	0.6 - 0.9	1,650	(103)	1,828	(114.1)	1,736	(108.4)	5.0
B66	1.5 – 1.8	1,506	(94)	1,812	(113.1)	1,721	(107.4)	12.5

Overall Average Shrink / S	well: 5.8

⁽¹⁾ Positive values are shrink and negative values are swell.

3.9 Groundwater Conditions

Groundwater was not observed in any test boring at the time of field exploration, nor when checked upon completion of drilling. These observations represent groundwater conditions at the time of the field exploration and may not be indicative of other times, or at other locations. Groundwater conditions can change with varying seasonal and weather conditions, and other factors.

Based on information obtained from the Arizona Department of Water Resources – Groundwater Data website (<u>https://gisweb.azwater.gov/waterresourcedata/GWSI.aspx</u>), the depth to groundwater was measured in 1959 at approximately 61 meters (or 200 feet) below the ground surface (approximate elevation of 1,634 meters (or 5,360 feet) above mean sea level) at an Arizona Department of Water Resources (ADWR) monitored well site (Local I.D.: 09 020-07.70X09.20) located approximately one half mile northeast of the site.

4.0 PAVEMENT THICKNESS DESIGN

4.1 Design Traffic Analyses

Existing traffic data for the project was included in the Request for Proposal (RFP) dated August 25, 2016, and includes the following:

- n Existing (2-way) Average Daily Traffic (ADT) (2011): 238
- n Annual Growth Rate: 2%
- n Percent Trucks: 1%
- n Percent Buses: 1%
- n Design Life: 20 years from 2016

Typical Roadway Widths

- n Driving Lane Width: 3.3 meters
- n Shoulder Width: 1.5 meters

Using this growth rate, the calculated ADT for 2016 is 263 vehicles. Using the percent trucks and percent busses provided, the following base year traffic data was calculated:

- n Autos: 257 vehicles per day in 2016
- n Trucks: 3 vehicles per day in 2016
- n Buses: 3 vehicles per day in 2016

These vehicle classifications can generally be classified using the AASHTO design procedures. In order to utilize this information in the pavement design procedure, an engineering analysis was completed to convert the traffic data into Equivalent (18-kip) Single Axle Loads (ESALs) in accordance with AASHTO criteria.

Based on the AASHTO 1993 Guide, the following load equivalency truck factors were used for determination of the ESALs:

BIA Description	AASHTO Description	Class	Traffic Equivalency Factor
Autos	Passenger Cars	2	0.0008
Buses	Buses	4	0.6806
Trucks	5+ Axle Tractor Semi Trailer	9	2.3719

The 2016 AADT was projected with the growth rate provided in order to estimate the 2036 AADT. The AADT was converted to ESAL's using the noted vehicle percentages and other design (truck, directional and lane) factors and summed over the design period. The analyses was performed for a 20 year design period. The projected AADTs and total design ESALs estimated for pavement design are shown in the following table.

Roadway	2016	2036	% D	% Lane	%	Design
	AADT	AADT	Factor	Factor	Growth	ESALs
N35 and N5045	263	383	50	100	2	41,613

%D – Directional Factor = 50% for two-lane roadways.

% Lane Factor = Percentage of ESALs in the Design Lane.

Detailed traffic analyses for the project are included on the Design Traffic Analysis Worksheet, Exhibit C-1 in Appendix C.

4.2 Pavement Subgrade Parameters

The design resilient modulus (M_R) for the pavement analyses was determined in accordance with the procedures of the ADOT Preliminary Engineering and Design Manual. The methodology uses data from actual R-value tests as well as R-value data correlated with sieve and plasticity results. Based on the results of the laboratory testing and our analyses of the AASHTO Group Index data, the subgrade conditions along the alignment are considered uniform, therefore a single design R-value was used along the entire length of the roadway.

Samples of subgrade materials were tested for sieve analysis and plasticity index. In addition, R-value testing was performed on selected samples. The calculated mean R-value determined from the analyses is 74.2. A Seasonal Variation Factor (SVF) of 1.8 was assigned for the project based on Figure 202.02-1 of the ADOT Pavement Engineering and Design Manual. The manual provides SVF values for nearby locations with similar elevations. The R_{MEAN} value, combined with a Seasonal Variation Factor of 1.8 results in the maximum resilient modulus (M_R) allowed of 26,000 pounds per square inch (psi). The project R_{MEAN} obtained from the laboratory test results is presented in Appendix C.

4.3 **Pavement Design Parameters**

Analyses for the pavement design of the project have been based on the procedures of AASHTO as modified by the Arizona Department of Transportation. For purposes of the pavement design for the project, the roadway has been classified as a "Local" road in accordance with Table 202.04-1 of the ADOT Pavement Preliminary Engineering and Design Manual. Based on this classification and other data outlined in this report, the following design parameters, as determined by the procedures outlined in the ADOT manual, were utilized for pavement engineering analyses and the determination of design alternatives for the project:

Design	Per ADOT Design Method	
Desig	41,613	
Mean	74.2	
Design Resilient Mo	dulus of Subgrade (psi)	26,000
Level of	Reliability	75%
Standard N	ormal Deviate	-0.674
Standard	d Deviation	0.35
Initi	4.0	
Term	2.4	
Δ	PSI	1.6
	Asphalt Concrete (AC)	0.44
Layer Structural Coefficients	Asphalt Rubber AC (ARAC)	0.44*
	Aggregate Base (ABC)	0.14
Seasonal V	1.8	
Drainage Coefficie	1.0	
Calculated Flexible Paven	1.05	
* See discussion on Layer Stru	AC in Section 4.4 of this report.	

4.4 Pavement Thickness Design Recommendations

Design calculations for the project incorporating the parameters outlined above are shown in Appendix C. The design calculations resulted in a calculated minimum Structural Number (SN) of 1.05 as outlined above. However, the ADOT Preliminary Engineering and Design Manual, Table 202.04-1 recommends a minimum SN of 1.35 and a minimum asphalt concrete thickness of 2 inches for local roadways with ESALs less than 100,000 and an ADT less than 500. Accordingly, a minimum SN of 1.35 was utilized to determine pavement thickness alternatives for this project.

Various alternatives have been considered to achieve the 20-year design life of the pavement including conventional asphalt concrete (AC) and Asphalt-Rubber Asphalt Concrete (ARAC)

with varying thicknesses. These various options are all designed to meet the minimum required SN of 1.35 for a 20-year design life.

Note on ARAC: A structural coefficient of 0.44 was used for both ARAC and AC. However, ARAC is anticipated to provide superior performance in cracking and aging characteristics when compared to AC. Because of these superior characteristics, a greater structural coefficient can sometimes be used for the upper portion of the ARAC layer. With all the pavement structural sections having a structural number greater than the minimum required, a structural coefficient greater than 0.44 was not used for ARAC.

Based on the information provided, our assumptions noted above, and in accordance with ADOT pavement design procedure, the following pavement structure alternatives have been developed for consideration by the BIA for this project:

	Deedway	Pavement Thickness in Millimeters (inches)				
Alternative	Roadway	AC	ARAC	AB Class 2	Total	
А	N35 and N5045	51mm (2")		102mm (4")	152mm (6")	
В	N35 and N5045		51mm (2")	102mm (4")	152mm (6")	
С	N35 and N5045	76mm (3")		102mm (4")	178mm (7")	
D	N35 and N5045		76mm (3")	102mm (4")	178mm (7")	
E	N35 and N5045	102mm (4")			102mm (4")	
F	N35 and N5045		102mm (4")		102mm (4")	

4.5 Life Cycle and Engineering Analyses of Pavement Alternatives

Based on the objective of meeting a SN of 1.35 over a 20-year design life, the following table provides recommended alternatives that can be considered for the project. Each alternative provides for the initial improvement recommendation along with anticipated global maintenance and overlay work that would theoretically be required to maintain the minimum level of serviceability in future years. For each initial improvement recommendation, we have calculated the average SN that would be achieved and have related that to an expected design life based on the pavement analyses that have been completed for the project.

Geotechnical and Pavement Design Report

N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

ALTERNATIVE PAVEMENT CONSTRUCTION RECOMMENDATIONS						
Alt.	Initial (Current Year) Improvement Recommendations	Structural Number	Design Life (years) ¹	Expected Maintenance (20-year Design Life)		
A	51 millimeters (mm) AC Over 102 mm ABC (2 inches AC Over 4 inches ABC)	1.44	20	Chip Seal at 5 years 51 mm (2 in) Overlay at 10 years ² Chip Seal at 15 years		
В	51 mm ARAC Over 102 mm ABC (2 inches ARAC Over 4 inches ABC)	1.44	20	Chip Seal at 5 years 51 mm (2 in) Overlay at 10 years ² Chip Seal at 15 years		
С	76 mm AC Over 102 mm ABC (3 inches AC Over 4 inches ABC)	1.84	20	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years		
D	76 mm ARAC Over 102 mm ABC (3 inches ARAC Over 4 inches ABC)	1.84	20	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years		
E	102 mm AC Over Compacted Subgrade (4 inches AC Over Compacted Subgrade)	1.76	20	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years		
F	F 102 mm ARAC Over Compacted Subgrade (4 inches ARAC Over Compacted Subgrade)		20	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years		

Notes:

1. The design life is based a minimum SN of 1.35 according to ADOT recommends for rural local main roadways.

2. A scrub seal is recommended beneath the overlay to seal existing cracks in the roadway surface.

3. The above pavement sections are based on the assumption that the subgrade soil and existing AC will be stable prior to construction of the new pavement section.

Each of the six alternatives has advantages and disadvantages. A description of each alternative and the various aspects unique to each of these is outlined as follows

- Alternative A— 51 mm (2 inches) AC Over 102 mm (4 inches) ABC: This alternative is the simplest approach and would include 51 mm (2 inches) of a conventional Asphalt Concrete (AC) over 102 mm (4 inches) of Aggregate Base Course (ABC). Alternative A would be anticipated to support the traffic load expected during a 20-year design life; however, this pavement would likely begin experiencing cracking within the first 2 to 3 years, which would require crack sealing and other maintenance measures at an earlier stage than the other alternatives. Additional maintenance anticipated to support a 20-year design life would include a chip seal coat at 5 years, a scrub seal and 51 mm (2 inch) AC overlay at 10 years, 10 years, and a chip seal coat at 15 years as summarized in the table above.
- Alternative B—51 mm (2 inches) ARAC Over 102 mm (4 inches) ABC: This alternative would include 51 mm (2 inches) of Asphalt-Rubber Asphalt Concrete (ARAC) over 102 mm (4 inches) of ABC. Alternative B would be anticipated to support the traffic load expected during a 20-year design life; however, this pavement would likely begin

experiencing cracking within the first 3 to 5 years, which would require crack sealing and other maintenance measures at an earlier stage than Alternatives C and D. Additional maintenance anticipated to support a 20-year design life would include a chip seal coat at 5 years, a scrub seal and 51 mm (2-inch) AC overlay at 10 years, and a chip seal coat at 15 years as summarized in the table above. The use of ARAC typically increases the ability of the pavement to withstand cracking. Therefore, the use of ARAC would likely require reduced maintenance over the design life of the pavement over conventional AC as presented in Alternative A.

- Alternative C—76 mm (3 inches) AC Over 102 mm (4 inches) ABC: This alternative would include 76 mm (3 inches) of a conventional Asphalt Concrete (AC) over 102 mm (4 inches) of Aggregate Base Course (ABC). Alternative C would be anticipated to support the traffic load expected during a 20-year design life, would likely begin experiencing cracking at a later date than Alternatives A and B, and would not require an overlay. Additional maintenance needed to support a 20-year design life would include a chip seal coat at 5 years, 10 years, and 15 years as summarized in the table above.
- Alternative D—76 mm (3 inches) ARAC Over 102 mm (4 inches) ABC: This alternative would include 76 mm (3 inches) of Asphalt-Rubber Asphalt Concrete (ARAC) over 102 mm (4 inches) of ABC. Alternative D would be anticipated to support the traffic load expected during a 20-year design life would likely begin experiencing cracking at a later date than Alternatives A and B, and would not require an overlay. Additional maintenance anticipated to support a 20-year design life would include a chip seal coat at 5 years, 10 years, and 15 years as summarized in the table above. The use of ARAC typically increases the ability of the pavement to withstand cracking. Therefore, the use of ARAC would likely require reduced maintenance over the design life of the pavement over conventional AC as presented in Alternative C.
- Alternative E—102 mm (4 inches) AC Over Compacted Subgrade: This alternative would include 102 mm (4 inches) of Asphalt Concrete (AC) over compacted subgrade. Alternative E would be anticipated to support the traffic load expected during a 20-year design life would likely begin experiencing cracking at a later date than Alternatives A through D, and would not require an overlay. Additional maintenance anticipated to support a 20-year design life would include a chip seal coat at 5 years, 10 years, and 15 years as summarized in the table above.
- Alternative F—102 mm (4 inches) ARAC Over Compacted Subgrade: This alternative would include 102 mm (4 inches) of Asphalt-Rubber Asphalt Concrete (ARAC) over compacted subgrade. Alternative F would be anticipated to support the traffic load expected during a 20-year design life would likely begin experiencing cracking at a later date than Alternatives A through D, and would not require an overlay. Additional maintenance anticipated to support a 20-year design life would include a chip seal coat at 5 years, 10 years, and 15 years as summarized in the table above. The use

of ARAC typically increases the ability of the pavement to withstand cracking. Therefore, the use of ARAC would likely require reduced maintenance over the design life of the pavement over conventional AC as presented in Alternative E.

4.6 **Preliminary Economic Evaluation of Pavement Alternatives**

An economic evaluation of estimated initial and life cycle project costs have been developed for each of the pavement alternatives outlined in this report. This economic evaluation has been developed for comparison between the alternatives and for the selection of the preferred alternative for the project.

Unit costs for the initial construction recommendations and the costs for the expected preventative and global maintenance programs have been estimated based upon prevailing local prices, cost data obtained from RS Means Site Work Cost Data (2016), and experience with similar construction strategies. The actual unit costs for the project may vary from those used in our analysis due to location and local material costs. The estimated unit costs for construction and maintenance activities used for this evaluation are as follows:

n	Clear and Grub	\$1.82/ m ² (\$1.52/ yd ²)
n	Finish Grading	\$0.63/ m ² (\$0.53/ yd ²)
n	AC	
n	ARAC	
n	ABC	\$0.52/ m ² / cm (\$1.11/ yd ² / in)
n	Scrub and Chip Seal	\$4.48/ m ² (\$3.75/ yd ²)

Our economic analysis for each alternative has been based on per lane kilometer (mile) costs. The life cycle cost analyses for each alternative includes the estimation of initial construction costs, maintenance over the design life (20 years), and salvage value at the end of the predicted useful life. Maintenance costs in the analysis include estimated periodic preventative procedures and periodic global surface treatments and costs experienced by ADOT and local practice. All costs which could potentially be expended over the life of each pavement alternative have been converted to Present Worth, using factors based upon an interest rate of five percent. Projected Average Annual Costs for each alternative have been based upon a 20-year Capital Recovery Factor. The results of our economic analyses are presented on Exhibits C-4 and C-5 in Appendix C.

The following table summarizes the initial costs per alternative and the average annual cost per lane mile including the anticipated pavement maintenance and rehabilitation costs.

PRELIMINARY PAVEMENT LIFE CYCLE COST SUMMARY

Alt.	Initial Pavement Improvements (millimeters)	Initial Pavement Improvements (inches)	Anticipated Pavement Maintenance (20-year Design Life)	Total Initial Cost	Average Annual Cost for Life Cycle (per lane mile)	Average Annual Cost for Life Cycle (per lane kilometer)
Α	51 mm AC Over 102 mm ABC	2 inches AC Over 4 inches ABC	Chip Seal at 5 years 2" Overlay at 10 years Chip Seal at 15 years	\$110,875	\$18,691	\$11,614
В	51 inches ARAC Over 102 mm ABC	2 inches ARAC Over 4 inches ABC	Chip Seal at 5 years 2" Overlay at 10 years Chip Seal at 15 years	\$118,760	\$18,920	\$11,756
С	76 mm AC Over 102 mm ABC	3 inches AC Over 4 inches ABC	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years	\$143,400	\$16,986	\$10,555
D	76 mm ARAC Over 102 mm ABC	3 inches ARAC Over 4 inches ABC	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years	\$155,227	\$17,489	\$10,867
E	102 mm AC Over Compacted Subgrade	4 inches AC Over Compacted Subgrade	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years	\$144,667	\$17,074	\$10,609
F	102 mm ARAC Over Compacted Subgrade	4 inches ARAC Over Compacted Subgrade	Chip Seal at 5 years Chip Seal at 10 years Chip Seal at 15 years	\$160,436	\$17,852	\$11,093

As can be seen in the table above, Alternative A has the lowest initial cost and Alternative C has the lowest life cycle cost. Although Alternative F has the highest initial cost, it requires less maintenance and does not require an overlay, which results in a lower average annual cost when compared to alternatives A and B. All 6 alternatives are within \$2,000 for their annual cost per lane kilometer (mile).

Since Terracon has no control over the cost of labor, materials, equipment or services furnished by a potential contractor, a contractor's method of determining prices, or over competitive bidding or market conditions, the estimated costs provided in this report have been made on the basis of our experience and represents our best judgment as an experienced and qualified professional engineer, familiar with the construction industry. Terracon cannot and does not guarantee that proposals, bids or actual project or construction cost will not vary from the estimated values provided in this report. Additionally, these costs do not include the additional costs for other aspects of the project such as traffic control and striping.

4.7 Recommended Pavement Alternative

In consideration of projected initial and life cycle costs, the technical advantages and disadvantages of each of the pavement alternatives, and the expected future expenditures for pavement maintenance, we recommend the BIA consider implementation of Alternative C or E for this project. The BIA should decide on the preferred alternative by considering the advantages and disadvantages, projected maintenance, cost considerations, and other factors. Terracon is available to assist in your consideration of the alternatives and selection of the preferred alternative for the project.

5.0 MATERIALS DESIGN

5.1 Materials Specifications

We understand that the BIA will prepare a set of construction plans and specifications for the project. We further understand that the BIA will likely utilize specifications based the metric version of the Federal Projects specification FP-14 Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects.

Based on the recommendations for the pavement alternatives outlined in this report, and pending the final determination of the actual design alternative, the following table provides recommended specifications that should be included in the contract documents. The table refers to the applicable specification based on the FP-14 unless otherwise noted.

FP-14	Specification	Comments/
Specification	Title	Recommendations
201	Clearing and Grubbing	
202	Additional Clearing and Grubbing	
203	Removal of Structures and Obstructions	
204	Excavation and Embankment	All fills placed on the project should be compacted to a minimum of 95% of the maximum density determined in accordance with ASTM D698 and moisture conditioned to within ±3% of the optimum moisture content.
209	Structure Excavation and Backfill	
212	Linear Grading	The depth of subgrade scarification and re- compaction should be a minimum depth of 10 inches. All subgrade on the project should be compacted to a minimum of 95% of the maximum density determined in accordance with ASTM D698 and moisture conditioned to within ±3% of the optimum moisture content.
301	Untreated Aggregate Courses	

Geotechnical and Pavement Design Report

N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

FP-14	Specification	Comments/
Specification	Title	Recommendations
401	Asphalt Concrete	A 12.5mm (½-inch) and/or 19mm (¾-inch) Asphalt Mix is recommended for the asphalt concrete on this project. Lift thicknesses of 12.5mm (½-inch) asphalt gyratory mix should be a minimum of 51mm (2-inches) and maximum of 76mm (3-inches). Lift thicknesses of 19mm (¾-inch) asphalt gyratory mix should be a minimum of 76mm (3-inches) and maximum of 114mm (4.5- inches).
703	Aggregate	Aggregate Base Course on the project should conform to the Grading Designation D(Base) requirements of Table 703-2.
413 ¹	Asphaltic Concrete (Asphalt-Rubber)	
408 ²	Shoulder Buildup	Existing site soils are suitable for use as shoulder buildup. If imported materials are to be used, they should have 100% passing the 1½" Sieve, 20 to 80% passing the ½" Sieve, 2 to 35% passing the No. 200 Sieve, and should have a Plasticity Index no greater than 10. Subgrade acceptance chart should be used for subgrade soils placed within the upper 3 feet beneath proposed pavements.

The following notes are based on ADOT 2008 Standards Specifications for Road and Bridge Construction to complement the FP-14 Specifications.

Note: ¹Refers to items listed in the ADOT Standard Specifications

Note: ²Refers to items listed in the ADOT Special Provisions

Neither the FP-14 nor ADOT have a specification for construction of a scrub seal. In the event that Alternative A or B is implemented, we are available to assist in the development of a specification for this particular item. We are also available to assist in the review and development of the final specifications for the project once the final design section alternatives are determined.

5.2 Site Preparation and Earthwork

We recommend that all site preparation and earthwork on the project be undertaken under the applicable portions of FP-14 Specifications 201, 202, 203, 204, 209, and 212. Recommended changes to these specifications as outlined in the preceding table should be included in the specific specifications or special provisions for the project.

Construction of fill slopes should be in accordance with Section 204.13 of the FP-14 Standard Specifications. Cut and fill slopes at the site are recommended to be constructed at a 3H:1V (horizontal:vertical) or flatter slope. Slopes constructed at slope inclinations steeper than 3H:1V should have surface erosion measures considered in the design. The face of all slopes should be compacted to the minimum specification for fill embankments. Fill slopes can be over-built and trimmed to expose a compacted slope surface.

Should any wet, soft or otherwise loose or disturbed soils be encountered during site grading, these soils should be removed and replaced with properly moisture-conditioned and compacted soils in accordance with Section 209 of the FP-14 Standard Specifications.

6.0 GENERAL COMMENTS

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical and pavement engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

Resourceful
Responsive
Reliable

	Project Mngr:	RP	Project No. 65165267	
	Drawn By:	KLJ	Scale: AS SHOWN	Ileriaco
E	Checked By:	RP	File No. 65165267.DWG	Consulting Engineers and Scie
	Approved By:		Date:	4685 South Ash Avenue, Suite H-4 Temp
		DRC	11/21/2016	PH. (480) 897-8200 FAX. (48

LEGEND:	NOTE: SITE IMAGES FROM GOOGLE EAR	H, PRO, AND GOOGLE ONLINE MAPS, 2016		
APPROXIMATE BORING LOCATION	Project Mngr:	Project No. 65165267	76	EXPLORATION
APPROXIMATE TEST PIT LOCATION	Drawn By:	Scale: AS SHOWN	llerracon	N35(8)1.2.4 a
APPROXIMATE FIELD ELECTRICAL RESISTIVITY LIN	Checked By:	File No. 65165267.DWG	Consulting Engineers and Scientists	SWEETWA
APPROXIMATE SEISMIC SURVEY LINE LOCATION	Approved By: DRC	Date: 11/21/2016	4685 South Ash Avenue, Suite H-4 Tempe, AZ 85282 PH. (480) 897-8200 FAX. (480) 897-1133	

ind N5045(1)1,2,4 ATER, ARIZONA

GEND:	NOTE: SITE IMAGES FROM	GOOGLE EARTH,	PRO, AND GOOGLE ONLINE MAPS, 201	6	
APPROXIMATE BORING LOCATION	Project Mngr:	RP	Project No. 65165267	76	EXPLORATION
APPROXIMATE TEST PIT LOCATION	Drawn By:	KLJ	Scale: AS SHOWN	Ilerracon	N35(8)1.2.4 a
APPROXIMATE FIELD ELECTRICAL RESISTIVITY LINE	Checked By:	RP	File No. 65165267.DWG	Consulting Engineers and Scientists	SWEETWA
APPROXIMATE SEISMIC SURVEY LINE LOCATION	Approved By:	DRC	Date: 11/21/2016	4685 South Ash Avenue, Suite H-4 Tempe, AZ 85282 PH. (480) 897-8200 FAX. (480) 897-1133	

and N5045(1)1,2,4 MATER, ARIZONA A-4

EGEND:	NOTE: SITE IMAGES FROM GOOGLE EAR	H, PRO, AND GOOGLE ONLINE MAPS, 2016		
• APPROXIMATE BORING LOCATION	Project Mngr:	Project No. 65165267	76	EXPLORATION
APPROXIMATE TEST PIT LOCATION	Drawn By:	Scale: AS SHOWN	llerracon	N35(8)1.2.4 ar
APPROXIMATE FIELD ELECTRICAL RESISTIVITY LIN	E Checked By:	File No. 65165267.DWG	Consulting Engineers and Scientists	SWEETWA
APPROXIMATE SEISMIC SURVEY LINE LOCATION	Approved By:	Date:	4685 South Ash Avenue, Suite H-4 Tempe, AZ 85282	

LEGEND:	NOTE: SITE IMAGES FROM GOOGLE EARTH,	PRO, AND GOOGLE ONLINE MAPS, 2016	a soora 1999aa ahaan kana daabaha ka ka ahaan ka bada daa bada daa bada da	
APPROXIMATE BORING LOCATION	Project Mngr: RP	Project No. 65165267	76	EXPLORATION
APPROXIMATE TEST PIT LOCATION	Drawn By: KLJ	Scale: AS SHOWN	llerracon	N35(8)1.2.4 ar
APPROXIMATE FIELD ELECTRICAL RESISTIVITY LINE	Checked By: RP	File No. 65165267.DWG	Consulting Engineers and Scientists	SWEETWA
APPROXIMATE SEISMIC SURVEY LINE LOCATION	Approved By: DRC	Date: 11/21/2016	4685 South Ash Avenue, Suite H-4 Tempe, AZ 85282 PH. (480) 897-8200 FAX. (480) 897-1133	

Field Exploration Description

A total of 54 test borings were drilled to depths of 0.9 to 3.2 meters (3 to 10½ feet) below the ground surface at the site on October 3 through October 5, 2016. A total of 12 test pits were excavated to depths of 1.8 to 3 meters (6 to 10 feet) below the ground surface at the site on October 17 and 18, 2016. Nuclear density testing at various depths was performed in the test pits. Each boring and test pit were backfilled with auger/excavation cuttings at the completion of the field exploration.

With the exception of B18, B46 and B47, the majority of the field explorations were performed within the proposed roadway alignment. At the location of B18, the test pit location was offset slightly to near the edge of the proposed roadway alignment due to hillside terrain and difficult access. At the location of B46, the boring was offset slightly to near the edge of the proposed roadway alignment due to loose surface sand and difficult access. At the location of B47, the test pit location was offset slightly to near the edge of the proposed roadway alignment due to loose surface sand and difficult access. At the location of B47, the test pit location was offset slightly to near the edge of the proposed roadway alignment due to wash terrain and difficult access.

A total of 17 field measurements of soil resistivity were performed on October 19, 2016, in general accordance with ASTM Test Method G 57, and IEEE std. 81, using the Wenner Four-Electrode Method. The soil resistivity tests were conducted at the locations identified on the attached Site Plan and Boring Locations diagrams, Exhibits A-1 through A-5.

A total of 11 seismic refraction test lines were completed to assess the excavation characteristics of shallow bedrock. The surveys were completed from October 17 through October 21, 2106. The test line locations, identified as S-1 through S-9, are depicted on the attached Site Plan and Boring Locations diagrams, Exhibits A-1 through A-5.

The approximate location of the borings, test pits, seismic survey lines, and field electrical resistivity lines are shown on the attached Site Plan and Boring Locations diagrams, Exhibits A-2 through A-5.

A continuous lithologic log of each boring and test pit was recorded by the field geologist during the drilling operations. At selected intervals, samples of the subsurface materials were taken by driving ring-lined barrel samplers in general accordance with ASTM Standards. Penetration resistance measurements were obtained by driving the ring-lined barrel samplers into the subsurface materials with a 63.5 kilogram (140-pound) automatic hammer falling 76 centimeters (30 inches). The penetration resistance value is a useful index in estimating the consistency or relative density of materials encountered. Bulk samples of subsurface materials were also obtained from the auger cuttings.

Groundwater conditions were evaluated in the borings at the time of site exploration.

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DE (More thar Density determir Inclue	NSITY OF COARSE-GRAI n 50% retained on No. 200 ed by Standard Penetration des gravels, sands and silf	NED SOILS sieve.) on Resistance ts.	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance								
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, psf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.					
H H	Very Loose	0 - 3	0 - 6	Very Soft	less than 500	0 - 1	< 3					
IGT	Loose	4 - 9	7 - 18	Soft	500 to 1,000	2 - 4	3 - 4					
IREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	1,000 to 2,000	4 - 8	5 - 9					
S	Dense	30 - 50	59 - 98	Stiff	2,000 to 4,000	8 - 15	10 - 18					
	Very Dense	> 50	<u>></u> 99	Very Stiff	4,000 to 8,000	15 - 30	19 - 42					
				Hard	> 8,000	> 30	> 42					

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier

Percent of Dry Weight < 5 5 - 12 > 12

GRAIN SIZE TERMINOLOGY

Major Component of Sample Boulders Cobbles Gravel Sand

Silt or Clay

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

Particle Size

PLASTICITY DESCRIPTION

Term Non-plastic Low Medium High

0 1 - 10 11 - 30 > 30

Plasticity Index

Exhibit A-8

UNIFIED SOIL CLASSIFICATION SYSTEM

		•		Soil Classification		
Criteria for Assigr	ning Group Symbols	and Group Names	S Using Laboratory	Tests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$		GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel F
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or M	1H	GM	Silty gravel ^{F,G,H}
Coarse Grained Soils:	on No. 4 sieve	More than 12% fines ^c	Fines classify as CL or C	Н	GC	Clayey gravel F,G,H
on No. 200 sieve	Sands:	Clean Sands:	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand
	50% or more of coarse	Less than 5% fines ^D	Cu < 6 and/or $1 > Cc > 3$	E	SP	Poorly graded sand
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or M	1H	SM	Silty sand ^{G,H,I}
	sieve	More than 12% fines ^D	Fines classify as CL or C	Н	SC	Clayey sand ^{G,H,I}
		Inorganio	PI > 7 and plots on or ab	ove "A" line ^J	CL	Lean clay ^{K,L,M}
	Silts and Clays:	morganic.	PI < 4 or plots below "A"	line ^J	ML	Silt ^{K,L,M}
F ' A ' I A ''	Liquid limit less than 50	Organici	Liquid limit - oven dried	< 0.75	0	Organic clay K,L,M,N
Fine-Grained Soils:		Organic.	Liquid limit - not dried	< 0.75	UL	Organic silt ^{K,L,M,O}
No. 200 sieve		Inorganio	PI plots on or above "A" I	ine	СН	Fat clay ^{K,L,M}
	Silts and Clays:	morganic.	PI plots below "A" line		MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Organici	Liquid limit - oven dried	< 0.75	ОЦ	Organic clay ^{K,L,M,P}
			Liquid limit - not dried	< 0.75		Organic silt K,L,M,Q
Highly organic soils:	Primarily	v organic matter, dark in c	color, and organic odor		PT	Peat

^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

^F If soil contains \geq 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.

lferracon

	BORING	BORING LOG NO. B1 Page 1 of 1									
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	nite	ed States Depa	artment	of th	e Int	erior	-
SI	 /E:	_		G	ant	ip, new wexic	0				
	Sweetwater, Arizona										
DG	LOCATION See Exploration Plan			NS	PE	L	Г %)	(%	f)	ATTERBERG LIMITS	IES
IC LO	Latitude: 36.84419° Longitude: -109.46707°		L (m)	ATIO	1XI	LTS	r FD1 MC (AER (9	TINL pd) T		LFIN
APH				TER N	IPLE	ELD .	uclea (pcf)/	WAT	RY L	LL-PL-PI	CEN
GR	Surface Elev.: 1577.) (m)		WA OBS	SAN	Ξ ^Ψ	DD	8	[⊔] ₩		PER
	POORLY GRADED SAND WITH SILT (SP-SM), brown,	N (M)									
	very loose to loose										
			4		Å	3-4		10	101	NP	11
			-								
					\mathbb{N}	1-1-2					
	1.98 Torrein a fact of a 20 Mataria	575.1	-		\square	N=3					
	Boring Terminated at 1.98 Meters										
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
Advan	cement Method:					Notes:					
Hol	ow Stem Auger										
A h. c	learnest Methodi										
Bor	ings backfilled with soil cuttings upon completion.										
	WATER LEVEL OBSERVATIONS					Devine Obert 1 4517	0040	D . 1			040
	Groundwater not encountered					Boring Started: 10/3	0/2016	Borir	ig Com	Dieted: 10/3/20	010
	4685 S A	c sh Ave	e Ste H-4			Drill Rig: D-50		Drille	er: D&S	Drilling	
	Te	npe, A	۰ ۲			Project No.: 651652	267	Exhi	bit: A	\-10	

	BORING LOG NO. B2										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIEN	IT: (Unite	d States Dep	artment	of th	e Int	erior	
	E .			(Gallu	ip, New Mexic	:0				
	Sweetwater, Arizona										
90	LOCATION See Exploration Plan			EL.	PE	F.,	T (%)	(%	ct)	ATTERBERG LIMITS	VES
HICL	Latitude: 36.84467° Longitude: -109.46501°		TH (m	2 LEV	E TY	0 TES	ar FD)/MC	TER ENT (TINU THT (p		
GRAP		Surface Elev.: 1580.8 (m)	VATE	AMPL	FIELD	Nucle D (pcf	WA SONTI	DRY	LL-PL-PI	ERCEI
	DEPTH SANDY I FAN CLAY (CL) light brown stiff	ELEVATION (m)	5<	5 v			0	_		E.
	SANDT LEAN CLAT (CL) , light blown, sun										
					Ж	4-5-6 N=11					
			1							34-22-12	54
	bord										
	Tatu					18-25		14	114		
			2	-							
	2.50	453	10 0								
<u>//////</u>	SEDIMENTARY BEDROCK - SANDSTONE, ta	an, strong	0.3		$\mathbf{\mathbf{x}}$	50/5"					
	Boring Terminated at 2.90 Meters		1.9			50/5					
	Stratification lines are approximate. In-situ, the transition may	y be gradual.				Hammer Type [,] A	Automatic				
		, .									
Advan Holl	vancement Method: Hollow Stem Auger					Notes:					
Aband Bori	onment Method: ngs backfilled with soil cuttings upon completion.										
	Groundwater not encountered	Terr				Boring Started: 10/3	3/2016	Borir	ng Com	pleted: 10/3/2	016
		4685 S Ash	Ave Ste H	4		Drill Rig: D-50		Drille	er: D&S	Drilling	
L		Temp	e. AZ			Project No.: 65165	267	Exhi	bit:	A-11	

	BORING LOG NO. B3 Page 1 of 1										
ľ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIE	INT	: Unite	ed States Depa	artment	of th	e Inte	erior	
			-		Gallu	ıp, New Mexic	0				
	311	E. Sweetwater, Arizona									
ľ	g	LOCATION See Exploration Plan			PE	F	т (%)	(%	J)	ATTERBERG LIMITS	LES
	HIC LO	Latitude: 36.84556° Longitude: -109.46307°	<u>ب</u> ۲		R LEV	0 TES	ar FD'	ENT (9	UNIT HT (po		
	GRAP	Surface Elev.: 1582.0 ((m) 2		VATEF 3SER AMPL	FIELD	Nucle D (pcf	MA	DRY	LL-PL-PI	ERCEI
		DEPTH ELEVATION ((m)		>⊡ ∾			0	-		Ë
		CILITIONINE (CM), readistribition, very losse to losse							404		
						6-9		3	101		20
ŀ				1 —						NP	38
				-							
						1 2 2					
		1.98 15	80.1			N=4					
		Boring Terminated at 1.98 Meters									
19/16											
DT 11/											
15.GD											
CON2C											
ERRA											
FL L4											
5267.G											
65 16											
VELL											
ON-0											
RT LO											
SMAF											
GEO											
ORT.											
L REP											
IGINA											
M OR											
D FRC											
ARATE.		Stratification lines are approximate. In-situ, the transition may be gradual.				Hammer Type: A	Automatic				
= SEP/	dvan	cement Method:				Notes:					
ALID IF	Holl	ow Stem Auger									
10T <≰	Aband	onment Method:									
G IS N	Bori	ngs backfilled with soil cuttings upon completion.									
IG LO(WATER LEVEL OBSERVATIONS				Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016
BORIN		Groundwater not encountered	30			Drill Rig: D-50		Drille	er: D&S	Drilling	
THIS E	4685 S As Ten			Ave Ste H-4 Je, AZ Project No.: 65165267 Exhibit: A-12							

		BORING L	00	G N	0.	B	4			F	Page 1 of	1
ľ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	IEN	T: U	nite	d States Depa	artment	of th	e Inte	erior	
-	דופ	·E·			G	allu	p, New Mexic	0				
	011	Sweetwater, Arizona										
	00	LOCATION See Exploration Plan		(۲	/EL ONS	ſΡΕ	ŝ)Т (%)	(%)	C)	ATTERBERG LIMITS	NES
	HICL	Latitude: 36.84656° Longitude: -109.46122°		TH (n	R LEV	LE T)	D TES SULTS	ear FC f()/MC	ATER TENT (Y UNI HT (p		NT FI
	GRAF	Surface Elev.: 1585.4 ((m)	DEP	WATE	SAMP	FIEL	Nucl DD (po	CONT	WEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION (<u>SILTY SAND (SM)</u> , reddish-brown, very loose to loose	(<u>m)</u>		- 0	₩						<u>п</u>
						$\overline{\mathbf{V}}$	1-2-2				NP	19
				1-	-	\square	N=4					
		1.83 156	83.5				2-2		6	96		
		Boring Terminated at 1.83 Meters										
/16												
11/19												
5.GDT												
DN201												
RRAC												
J TE												
267.G												
65165												
WELL												
G-NO												
RT LO												
O SMA												
ы Ю												
PORT												
IAL RE												
ORIGIN												
ROM 0												
TEDF		Stratification lines are approximate. In-situ, the transition may be gradual					Hammer Type: A	utomatic				
EPARA												
DIFS	Advan Holl	cement Method: ow Stem Auger					Notes:					
T VALI.												
IS NO	Aband Bori	onment Method: ngs backfilled with soil cuttings upon completion.										
9 LOG		WATER LEVEL OBSERVATIONS					Boring Started: 10/3	8/2016	Borin		pleted: 10/3/20	016
ORING		Groundwater not encountered	2				Drill Rig: D-50		Drille	er: D&S	Drillina	
THIS B	4685 S A: Tei			Ash Ave Ste H-4 Fempe, AZ Project No.: 65165267 Exhibit: A-13								

	BORING LOG NO. B5 Page 1 of 1										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIEN	T: U	nite	d States Dep	artment	of th	e Inte	erior	-
SIT	E:			G	anu	p, new mexic	:0				
	Sweetwater, Arizona			-						ATTERBERG	
VPHIC LOG	LOCATION See Exploration Plan Latitude: 36.8476° Longitude: -109.45949°		(m) HTH	ER LEVEL RVATIONS	PLE TYPE	LD TEST ESULTS	slear FDT ocf/MC (%)	VATER ITENT (%)	RY UNIT GHT (pcf)		ENT FINES
GR/	Surf	ace Elev.: 1587.0 (r ELEVATION (r	n) 🛛	WAT OBSE	SAM	E	DD (I	COP	DF		PERC
	SILTY SAND (SM), light brown, very loose										
						3-3		4	99	NP	23
			1-								
						1-1-2 N=3				NP	16
			2 -								
	medium dense					3-5-6					
	3 20	158	38 3-	-	Å	N=11					
	Stratification lines are approximate. In-situ, the transition may be o	rradual.				Hammer Type: 4	utomatic				
	organication mes are approximate. In situ, the transition may be g	nauuai.				папіпеі Туре: А	atomatic				
Advancement Method: Hollow Stem Auger Abandonment Method: Borings backfilled with soil cuttings upon completion.						Notes:					
						Poring Storted: 40"	5/2016	Perio		alatad: 10/E/00	116
	Groundwater not encountered	llerr				Drill Dia: D 50	טו עשובע	Bouin		Drilling	סו נ
		4685 S Ash /	Ave Ste H-4	4		Project No.: 651652	267	Exhit	oit: A	-14	

	BORING LOG NO. B6 Page 1 of 1										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL		T: U	Inite	ed States Depa	artment	of th	e Inte	erior	
SI	Έ:	-		G	allu	ip, new mexic	0				
	Sweetwater, Arizona										
ŋ	LOCATION See Exploration Plan			ZS LI	щ		. (%	(9	6	ATTERBERG LIMITS	ES
CLC	Latitude: 36.84862° Longitude: -109.45761°		(m)	TIO	TYF	LTS	FDT AC (°	NT (%	INIT (pd		- FIN
APHI			는 다	ER I	PLE	ESUI	clear pcf)/h	VAT	L GH L	LL-PL-PI	ENT
GR	Surface Elev.: 1586.6	(m)	B	WAT	SAM	음쓰	NU NU	CON	۵ÿ		PERC
	DEPTH ELEVATION POORLY GRADED SAND WITH SILT (SP-SM), light	(m)		0							
	brown, loose										
					X	4-4-5 N=9					
			1 _							NP	10
			I								
					ł						
	1.83	584.8				4-5		2	94		
	Boring Terminated at 1.83 Meters										
	Stratification lines are approximate. In situ, the transition may be arridual					Hammer Type:	utomatic				
	oudanoutori into are approximate. Infordu, une transitiori may be gradual.					паліпеі туре. А					
Advar	cement Method:					Notes:					
HO	ow Stelli Auger										
Abanc	onment Method										
Bor	ngs backfilled with soil cuttings upon completion.										
WATER LEVEL OBSERVATIONS						Poring Storted: 10/2	2/2016	Deri		alatad: 10/2/20	16
	Groundwater not encountered					Doring Started: 10/3	0/2010	Boul			סוי
	4685 S As	h Ave S	Ste H-4			Unii Rig: D-50		Drille	er: D&S	Urilling	
	Tem	ipe, AZ	z			Project No.: 651652	267	Exhil	bit: A	\-15	

		BORING L	OG I	NO	. B7	7			F	Page 1 of	1
Ī	PF	ROJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIEN	NT:	Unite	d States Depa	artment	of th	e Inte	erior	
-	01	TC.			Gallu	ıp, New Mexic	0				
	51	IE: Sweetwater, Arizona									
ľ	ÿ	LOCATION See Exploration Plan		Ш	PE PE	F	т (%)	(%	d	ATTERBERG LIMITS	LES NES
	HIC LO	Latitude: 36.84935° Longitude: -109.45887°	E (E)	S LEVI	E TY	D TES' ULTS	ar FD' /MC (ENT (9	UNIT HT (po		
	GRAP	Surface Elev.: 1585.7 (m) H	VATER	AMPL	FIELD	Nucle D (pcf	MA	DRY	LL-PL-PI	ERCEI
		DEPTH ELEVATION (m)	> 7	ο Γ			0	-		Ë
-		dense			Î						
						7.44			00		44
			1	_		7-11		9	98	NP	11
		very dense				32-50/3"					
		1.98 158	33.7								
ſ		Boring Terminated at 1.98 Meters									
19/16											
T 11/											
15.GD											
CON20											
ERRAC											
PJ TE											
5267.G											
65165											
VELL											
NON-6											
RT LOC											
SMAF											
GEO											
ORT.											
- REP											
GINAI											
M OR											
0 FRO											
ARATE		Stratification lines are approximate. In-situ, the transition may be gradual.	1			Hammer Type: A	utomatic				
SEP/	Adva	ncement Method:				Notes:					
ALID IF	Ho	liow Stem Auger									
IOT V/	Aban	donment Method:									
g IS N	Bo	rings backfilled with soil cuttings upon completion.									
IG LO		WATER LEVEL OBSERVATIONS				Boring Started: 10/3	8/2016	Borir	ng Com	oleted: 10/3/20	016
BORIN		Groundwater not encountered	90		Π	Drill Rig: D-50		Drille	er: D&S	Drilling	
THIS		4685 S Ash Temp	Ave Ste H be, AZ	-4	-	Project No.: 651652	267	Exhil	bit: A	A-16	

	BORING L	.00	G N	10.	B	8			F	Page 1 of 1	1
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	LIEN	T: U	Inite	ed States Depa	artment	of th	e Int	erior	-
SIT	E:			G	anu	ip, new mexic	0				
	Sweetwater, Arizona										
ŋ	LOCATION See Exploration Plan			R S S	Ë		. (%	(9	(ATTERBERG LIMITS	ES
CLC	Latitude: 36.84042° Lopoitude: -100.46114°		(E	N	ТҮР	EST	FDT 1C (5	П (%	NT (pd		LIN
PHIC	Landue. 30.04342 Longitude103.40114		TH	RVA	LE		lear cf)/N	TEN	Σ E H C		ENT
GRA	Surface Elev.: 1581.0	(m)	DEI	VATE	AMF	RE	D (p	× NOS	NDR NDR	LL-PL-PI	ERCI
Ŭ	DEPTH ELEVATION	(m)		>ō	S		Ω	0	_		P
	SILTY SAND (SM), light brown, medium dense										
					∇	2-3-10					
					$ \mathbf{X} $	N=13					
										NP	15
			1-	1							
	1.8315	79.1				22-29		1	115		
	Boring Terminated at 1.83 Meters										
	Stratification lines are approximate. In situ, the transition may be gradual			1		Hammer Tupo: _ ^	utomatic				
	ou dance aver a proximate. In site, une transition may be gradidal.					папше туре. А	atomatic				
Advan	cement Method:					Notes:					
Holl	ow Stem Auger										
Aband	onment Method:										
DUI	ngs backninga with son cuturigs upon completion.										
	WATER LEVEL OBSERVATIONS					Boring Started: 10/3	8/2016	Borin	ng Com	oleted: 10/3/20	016
	Groundwater not encountered	2				Drill Rig: D-50		Drille	er: D&S	Drilling	
	4685 S Ash Tem	Ave	Ste H-4 Z			Project No.: 651652	267	Exhil	bit: A		

		BORING L	OG	N	0.	B)			F	Page 1 of	1
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIE	NT	: Ur	nite	d States Dep	artment	of th	e Int	erior	
-	SIT	ſE:			Ga	anu	p, New Mexic	:0				
		Sweetwater, Arizona						ī		1	ATTERREDO	
	SAPHIC LOG	LOCATION See Exploration Plan Latitude: 36.84968° Longitude: -109.45572°	DEPTH (m)		ATER LEVEL SERVATIONS	ИРLЕ ТҮРЕ	IELD TEST RESULTS	uclear FDT (pcf)/MC (%)	WATER NTENT (%)	DRY UNIT EIGHT (pcf)	LIL-PL-PI	CENT FINES
	5	DEPTH ELEVATION ((m) (m)		AN OB 0 B 0 B 0 B 0 B 0 B 0	SAI	ш-	NO	00	->		PER
		POORLY GRADED SAND WITH SILT (SP-SM), light brown, loose			,	ł	3-5		5	105		
			1	_	4	T					NP	8
					5	X	1-2-2 N=4					
			2	2 —		/						
1/19/16					×	\bigvee	1-2-2				NP	12
DT 1		3.20 158 Boring Terminated at 3.20 Meters	33.5	' -		\square	N=4					
ATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 65165267.GPJ TERRACON201		Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: /	Automatic				
EPARA		Stratification lines are approximate. In-situ, the transition may be gradual.						atomato				
IS NOT VALID IF SI	dvan Hol band Bor	cement Method: ow Stem Auger onment Method: ings backfilled with soil cuttings upon completion.					Notes:					
5 LOG	WATER LEVEL OBSERVATIONS						Boring Startad: 10/	3/2016	Rorin			116
ORING		Groundwater not encountered				ר	Drill Rig. D-50	512010	Drill	er: D&S	Drilling	510
THIS B		4685 S Ash Temp	Ave Ste be, AZ	H-4			Project No.: 651652	267	Exhi	bit: A		

		BORING LO	OG	N	0.	B1	0			F	Page 1 of	1
ľ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	IEN	Г: U	nite	ed States Depa	artment	of th	e Int	erior	
╞	513	rc.			G	allu	ıp, New Mexic	0				
	311	Sweetwater, Arizona										
ľ	ő	LOCATION See Exploration Plan			NS NS	ΡE	F	т (%)	(%	c)	ATTERBERG LIMITS	NES
	HICL	Latitude: 36.85053° Longitude: -109.45373°		TH (m	R LEV	Е ТҮ	DITES	ar FD	TER ENT (TINUT TUNIT		
	GRAP	Surface Elev.: 1589.0 ((m)	DEP	VATE	AMPI	FIELD	Nucle D (pct	ND	DRY WEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION ((m)		>0	S N						ä
						Ī						
							4.4.4					24
				1-	-	Ж	N=2				INP .	34
							5-9		2	91		
		1.83 150 Boring Terminated at 1.83 Meters	87.1						-			
19/16												
DT 11/												
115.GE												
CON20												
ERRA												
E L H												
5267.0												
65 16												
VELL												
ON-0												
RT LOO												
SMAF												
GEO												
ORT.												
L REP												
IGINA												
M OR												
D FRC												
RATE		Stratification lines are approximate. In-situ, the transition may be gradual.			I	1	Hammer Type: A	utomatic		1	I	
SEPA	Advan	ancement Method:					Notes:					
LID IF	Holl	Iollow Stem Auger										
OT VA	Aband	andonment Method:										
N SI 5	Bori	bandonment Method: Borings backfilled with soil cuttings upon completion.										
IG LOC		WATER LEVEL OBSERVATIONS					Boring Started: 10/3	8/2016	Borir	ng Com	pleted: 10/3/2	016
BORIN		Groundwater not encountered	2				Drill Rig: D-50		Drille	er: D&S	Drilling	
THISE		4685 S Ash Temp	Ave Stoe, AZ	te H-4		_	Project No.: 651652	267	Exhi	bit: A	A-19	

		В	ORING LO	DG N	10	. B1	1			F	Page 1 of	1
Ī	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIE	NT:	Unite	d States Dep	artment	of th	e Inte	erior	
-		- -				Gallu	p, New Mexic	0				
	311	E. Sweetwater, Arizona										
ľ	g	LOCATION See Exploration Plan			H	PE PE	F	r %)	(%	tf)	ATTERBERG LIMITS	ES
	HC LO	Latitude: 36.85131° Longitude: -109.45173°		Щ (ш) Ц	K LEVI	ATIO E TYI	ULTS	ar FD ⁻ VMC (TER ENT (9	UNIT HT (pc		
	BRAPI	Si	urface Elev.: 1589.9 (i	m) [m	ATEF	AMPL	FIELD RES	Nucle D (pcf	WA	DRY VEIG	LL-PL-PI	RCE
		DEPTH	ELEVATION (m)	5	S S		ā	0			H.
		<u>SILTT SAND (SM)</u> , light brown, loose				Î						
							7-8		3	89		
				1							NP	15
				'								
						Y						
ľ		1.98	158	7.9			4-4-4 N=8					
ſ		Boring Terminated at 1.98 Meters										
9/16												
T 11/1												
15.GD												
ON20												
RRAC												
J TEI												
267.GF												
351652												
ELL (
∧ ON-												
LOG												
MAR												
0E0												
RT.												
REPO												
SINAL												
1 ORIG												
FROV												
ATED		Stratification lines are approximate. In-situ, the transition may be	e gradual.				Hammer Type: A	Automatic				
SEPAR	Advancement Method:						Notori					
D IF (Advancement Method: Hollow Stem Auger						INULES:					
T VAL	About descent Mathead											
IS NO	Abandonment Method: Borings backfilled with soil cuttings upon completion.											
, LOG		WATER LEVEL OBSERVATIONS	_				Poring Charts d. 40"	2/2010	Drit		alatad: 10/0/0	016
JRING		Groundwater not encountered					Boring Started: 10/3	3/2016	Boul		Drilling	UID
-IIS BC			4685 S Ash	Ave Ste H	1-4			267	Drille			
ĖΙ			Temp	e, AZ			Project No.: 651652	267	Exhil	dit: A	4-20	

				TEST PIT L	.OG	N	0.	B	12			F	Page 1 of	1
ľ	PR	OJECT:	N35(8)1,2,4 and N5045(1)1,2,4	4	CLIE	NT	: U	nite	d States Dep	artment	of th	e Int	erior	
ŀ	SIT	E:			-		G	allu	IP, New Mexic	:0				
			Sweetwater, Arizona							•				
	90	LOCATIO	N See Exploration Plan		6	, į	/EL ONS	ΡE	T C)T (%)	(%)	ر ق	ATTERBERG LIMITS	NES
	HICL	Latitude: 36	3.85201° Longitude: -109.44969°		HI HI		R LEV VATIO	-е т)	D TES	ar FC fyMC	TER ENT (UNU HT (p		NT FI
	GRAF			Surface Elev.: 1594.0 ((m)		VATE BSER	AMPI	FIELI	Nucle D (pc	CONT	DRY	LL-PL-PI	ERCE
			Y SAND tan to brown slightly red tint	ELEVATION ((m)		>0	S		93 4/2 0				□
İ			TOAND, tan to brown, slightly red the					Î		00. 112.0				
•										97.2/2.4				
					1	_				97.9/2.0 93.3/1.9			NP	14
					'									
:								1						
İ														
•					2	-								
9/16 														
F 11/1		3.05 Test	Pit Terminated at 3.05 Meters	159	<u>91.0</u> 3									
15.GD ⁻														
ON201														
RRAC														
U TEI														
267.GF														
35 1652														
ELL (
N ON-														
r Log														
SMAR ⁻														
GEO (
RT.														
REPO														
SINAL														
1 ORIC														
FROV														
ATED		Stratification lines are approximate. In-situ, the transition may be gradual.							Hammer Type: A	Automatic				
SEPAF	Advor	dvancement Method:							Notoci					
S I OI	advancement Method: Backhoe							NULES:						
DT VAL	Abandonment Method													
IS NC	Abandonment Method: Borings backfilled with soil cuttings upon completion.													
5 LOG		WATER LEVEL OBSERVATIONS							Test Pit Started: 10	/18/2016	Teet	Pit Con	npleted: 10/19	/2016
ORINC		Groundw	vater not encountered	llerr					Excavator: CAT 32	0	One	rator: D	&S Drilling	
THIS B			4685 S Ast						Project No.: 65165	- 267	Exhi	bit: A	A-21	

		BORING LO	OG	i N	0.	B1	3			F	Page 1 of	1
Ī	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	IEN	Г: U	nite	d States Depa	artment	of th	e Inte	erior	
-	TIP	F-	-		G	allu	p, New Mexic	0				
	011	Sweetwater, Arizona										
	00	LOCATION See Exploration Plan		(r	/EL ONS	ſΡΕ	ŝ)Т (%)	(%)	cf)	ATTERBERG LIMITS	NES
	PHIC L	Latitude: 36.85263° Longitude: -109.44762°		TH (n	R LEV	LE T)	D TES SULTS	ear FC :f)/MC	ATER TENT (Y UNI BHT (p		INT FI
	GRAF	Surface Elev.: 1596.2	(m)	DEP	WATE	SAMP	FIEL	Nuci DD (po	CONT	WEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION SILTY SAND (SM), brown, very loose to loose	<u>(m)</u>		- 0	₩						<u>п</u>
							5-5		4	103	NP	17
				1-		T						
		1.8315	94.4			\mathbb{N}	1-1-2					
		Boring Terminated at 1.83 Meters				$\langle \cdot \rangle$	N=3					
/16												
11/19												
5.GDT												
ON201												
RRAC												
PJ TE												
5267.G												
65165												
WELL												
G-NO												
ART LC												
O SM∕												
EPORT												
VAL RI												
ORIGII												
ROM												
ATED I		Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
SEPAR	Adve-	dvancement Method:					Notos					
S I OI	Holl	Ivancement Method: Hollow Stem Auger					INULES:					
DT VAL	Aband	handonment Method										
S IS NC	Abandonment Method: Borings backfilled with soil cuttings upon completion.											
NG LOC		WATER LEVEL OBSERVATIONS					Boring Started: 10/4	/2016	Borir	ng Com	oleted: 10/4/20	016
BORIN		Groundwater not encountered	5				Drill Rig: D-50		Drille	er: D&S	Drilling	
THIS		4685 S Ash Tem	n Ave S pe, AZ	Ste H-4	_		Project No.: 651652	67	Exhi	bit: A	\-22	

		BORING LO	C	N). В	314			F	Page 1 of	1
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLI	EN	: Uni	ited States De	epartment	of th	e Inte	erior	
	ТІР		-		Gal	llup, New Mex	cico				
	011	Sweetwater, Arizona									
	go	LOCATION See Exploration Plan		_	DNS NS		т (%)	(%	cl)	ATTERBERG LIMITS	ZES
	HICL	Latitude: 36.8531° Longitude: -109.44538°		TH (m	VATIO		ar FD	ENT (HT (pq		NTFIN
	GRAP	Surface Elev.: 1601.1 ((m)	DEP.	SSER.	FIELD RES	Nucle D (pcf	NOC	DRY	LL-PL-PI	ERCEI
		DEPTH ELEVATION ((m)		> 0 <			0	-		ä
		<u>oren i orașe (oni</u>), readicit brown, very locac									
						N=2					
				1 —						NP	16
				•							
						23		5	08		
·		1.83 159 Boring Terminated at 1.83 Meters	99.3			2-3		5	90		
19/16											
Л 11/											
15.GE											
CON2C											
ERRA(
IT L4											
5267.0											
65 16											
VELL											
ON-0											
RT LO(
SMAF											
GEO											
ORT.											
L REP											
IGINA											
M OR											
D FRC											
ARATE		Stratification lines are approximate. In-situ, the transition may be gradual.	1			Hammer Type	: Automatic		1		
SEP/	dvan	cement Method:				Notes:					
ALID IF	Holl	ow Stem Auger									
01 </th <td>band</td> <td>onment Method:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	band	onment Method:									
GISN	Bori	ngs backfilled with soil cuttings upon completion.									
IG LO		WATER LEVEL OBSERVATIONS				Boring Started: 7	10/5/2016	Borir	ng Com	pleted: 10/5/2	016
BORIN		Groundwater not encountered				Drill Rig: D-50		Drille	er: D&S	Drilling	
THIS		4685 S Ash Av Tempe,				Project No.: 651	65267	Exhil	bit: A	۹-23	

	TEST PIT LOG NO. B15 Page 1 of 1											
PRO	JECT: N35(8)1,2,4 and N5045(1)1,2,4	C	LIEN	T: U	nite	d States Dep	artment	of th	e Int	erior		
SITE	:			G	anu	p, new wext	.0					
	Sweetwater, Arizona											
g L	OCATION See Exploration Plan			NS	Ш		- (%	()	6	ATTERBERG LIMITS	ES	
0 1 2 1	atitude: 36.85356° Longitude: -109.44327°		(m) H	ATIO	TYF	LTS	- FD1 MC (ER VT (9	TINIT T (pc			
APH	,		ЦЦ	TER K	IPLE	ESU.	icleai pcf)/l	WAT	L RY L	LL-PL-PI		
GR	Surface Elev.: 1	608.0 (m)	ā	WA ⁻ OBSI	SAN	E &	NNU NU	COL			PER(
D	EPTH ELEVA POORLY GRADED SAND WITH SILT (SP-SM), trace	ATION (m)		-			102.3/0.9					
	gravel in upper 3 to 4 inches											
							100.5/1.4			NP	9	
			1-				99.8/4.9					
										NP		
			-									
			2-									
	very loose, increased moisture											
	05	1605.0	~									
<u></u>]]]].	Test Pit Terminated at 3.05 Meters	1605.0	3-	-								
	Stratification lines are approximate. In-situ, the transition may be gradual.			1		Hammer Type: A	Automatic	<u> </u>	1		I	
						-						
Advance Backh	ment Method: oe					Notes:						
Abandon	ment Method:											
Boring	s backfilled with soil cuttings upon completion.											
	WATER LEVEL OBSERVATIONS					Test Pit Started: 10)/18/2016	Test	Pit Con	npleted: 10/18	/2016	
	Groundwater not encountered					Excavator: CAT 32	0	Ope	rator: D	&S Drillina		
	4685	S Ash Ave	Ste H-4 Z			Project No.: 65165	267	Exhi	bit:	\-24		

		BORING L	00	G N	0.	B1	6			F	Page 1 of	1
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	nite	ed States Depa	artment	of th	e Int	erior	
	דופ		_		G	allu	ip, New Mexic	:0				
	011	Sweetwater, Arizona										
	00	LOCATION See Exploration Plan		(/EL ONS	ſΡΕ	T.C)T (%)	(%)	r cf)	ATTERBERG LIMITS	NES
	HICL	Latitude: 36.85395° Longitude: -109.4415°		TH (n	R LEV	LET	D TES SULTS	ear FD :f)/MC	ATER IENT (Y UNI PHT (p		INT FI
	GRAF	Surface Elev.: 1606.1	(m)	DEP	WATE	SAMP	FIEL	Nucl DD (po	CONT	WEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION SILTY SAND (SM), reddish-brown, very loose	(m)		- 0	۵ ۱						<u> </u>
						∇	1-1-1				NP	33
				1-	-	\square	N=2					
		medium dense 1.83 16	604.2				5-13		14	109		
		Boring Terminated at 1.83 Meters										
/16												
11/19												
5.GDT												
DN201												
RRAC												
J TE												
267.G												
65165												
NELL												
G-NO												
RT LO												
SMAF												
GEO												
PORT.												
AL REF												
RIGIN/												
IO MO												
ED FR												
PARAT	Stratification lines are approximate. In-situ, the transition may be gradual.						Hammer Type: A	NUTOMATIC				
IF SE	Advan Holl	dvancement Method: Hollow Stem Auger					Notes:					
VALID												
S NOT	Abandonment Method: Borings backfilled with soil cuttings upon completion.											
LOG I									1.			
RING		Groundwater not encountered					Boring Started: 10/5	5/2016	Borir	ng Com	Deted: 10/5/20	016
HIS BC		4685 S_Asi	C Ave	Ste H-4			Drill Rig: D-50	007	Drille	er: D&S		
≐		Tem	ipe, A	¥Z			Project No.: 651652	207	Exhi	dit: A	4-25	

		· · · · · · · · · · · · · · · · · · ·	TEST PIT L	OG N	10.	B	17			F	Page 1 of	1
ſ	PR	ROJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIEN	T: U	Inite	d States Dep	artment	of th	e Inte	erior	
ŀ	SIT	TE:			G	anu	ip, new mexic	:0				
		Sweetwater, Arizona							1	1	ATTERREDO	1
	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 36.85427° Longitude: -109.43888°	Surface Elev.: 1614.8 (r	DEPTH (m)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	Nuclear FDT DD (pcf)/MC (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pơi)	LIMITS	PERCENT FINES
-		DEPTH SILTY SAND (SM), brown to red-brown	<u>ELEVATION (</u> r	n) 1 -	_			100.1/1.5 99.1/1.5 95.6/2.6 96.7/1.6				
19/16				2 -							NP	13
ATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 65 165267.GPJ TERRACON2015.GDT 11/19/16		Test Pit Terminated at 3.05 Meters		<u>1.8</u> 3 –		Y						
PARAT.		Stratification lines are approximate. In-situ, the transition may be g	ay be gradual.				Hammer Type:	Automatic				
G IS NOT VALID IF SEF	Advan Bac Aband Bori	ncement Method: ckhoe donment Method: rings backfilled with soil cuttings upon completion.	_				Notes:					
NGLO		WATER LEVEL OBSERVATIONS					Test Pit Started: 10)/18/2016	Test	Pit Con	pleted: 10/18	/2016
BORI		Groundwater not encountered	IIGLL	DC		Π	Excavator: CAT 32	0	Ope	rator: Da	&S Drilling	
THIS			Ave Ste H-4 e, AZ	Ļ		Project No.: 65165	267	Exhi	bit: A	A-26		

				TEST PIT L	OG I	NO	. B	18			F	Page 1 of	1
	PR	OJECT:	N35(8)1,2,4 and N5045(1)1,2,	4	CLIEN	IT: L	Jnite	ed States Dep	partment	of th	e Int	erior	
_	SIT	'E:				(Jailu	ip, New Mexi	CO				
			Sweetwater, Arizona						1		1	ATTERREDO	
	90	LOCATIO	N See Exploration Plan		Ê	E A	YPE	Lo S	DT (%)	(%)	od)	LIMITS	INES
	HICI	Latitude: 36	.85403° Longitude: -109.43673°		TH (r	R LE	LE T	D TES	ear Fl	ATER	Y UNI HT (F		INT F
	GRAF			Surface Elev.: 1610.8 (m) 🗄	NATE	SAMP	FIEL	Nucl DD (pc	CON	DR	LL-PL-PI	ERCE
		DEPTH	Y SAND (SM), brown to red-brown	ELEVATION (m)	- (, ,		100.7/2.3				_ ₽_
		<u></u> .	<u> (</u> ,										
									101.2/2.7				
					1 -				100.3/3.5			NP	15
					'								
 							1						
					2-								
)/16													
11/19		3.05 T aat	Dit Taumin stad at 2 05 Mataus	160	<u></u>	-							
5.GDT		rest	Pit Terminaled at 3.05 Meters										
N2015													
RACO													
TER													
7.GP													
16526													
11 65 11													
IO WE													
-06-N													
IART L													
EO SN													
0													
POR													
IAL RE													
RIGIN													
O WO													
ED FR													
ARAT		Stratification	on lines are approximate. In-situ, the transition	may be gradual.				Hammer Type:	Automatic				
F SEP	dvan	Ivancement Method: Backhoe						Notes:					
ALID I	Dac	Backhoe											
	bandonment Method:												
GIS∧	Borings backfilled with soil cuttings upon completion.												
l LO	WATER LEVEL OBSERVATIONS							Test Pit Started: 10	0/18/2016	Test	Pit Con	npleted: 10/18	3/2016
BORI							Π	Excavator: CAT 32	20	Оре	rator: D	&S Drilling	
THIS				Ave Ste H- be, AZ	4	-	Project No.: 65165	5267	Exhi	bit: A	\-27		

				TEST PIT L	OG I	NO	. B	19			F	Page 1 of	1
ſ	PR	OJECT:	N35(8)1,2,4 and N5045(1)1,2,	4	CLIEN	IT:	Unite	ed States Dep	partment	of th	e Int	erior	
-	SIT	'E:					Gallu	IP, New Wext	CO				
			Sweetwater, Arizona					1		1	1	ATTERREDO	
	LOG	LOCATIO	N See Exploration Plan		Ê	ζĒΓ	YPE	с s	DT (%):	(%)	od)	LIMITS	INES
	HICI	Latitude: 36	.85405° Longitude: -109.43452°		TH (r	R LE		DIES	ear Fl	ATER	Y UNI HT (F		INT F
	GRAF			Surface Elev.: 1615.9 (m) 🗄	NATE	SAMP	REL	Nucl DD (pc	CON	DR	LL-PL-PI	ERCE
		DEPTH	Y SAND (SM), brown to red-brown	ELEVATION (m)	- (100.5/1.1				_ ₽_
		<u></u> .	<u> (,</u> ,				I						
					1.				99.2/1.3			NP	22
					'				92.3/3.8				
							Ţ						
-					2	-							
/16													
11/19		3.05		161	1 <u>2.8</u> 3 ·	_							
GDT.		lest	Pit Terminated at 3.05 Meters										
N2015													
RACO													
TERF													
7.GPJ													
16526													
-T 65													
D WEI													
N-9C													
ART L													
0 SM													
В													
DRT													
AL REI													
sigin/													
OM OF													
D FR(
ARATE		Stratificati	on lines are approximate. In-situ, the transition	may be gradual.	I			Hammer Type:	Automatic				
SEP/	dvan	cement Meth	nod:	Т				Notes:					
LID IF	Bac	khoe											
OT VA	band	onment Meth	nod:										
N SI C	Bori	ngs backfille	d with soil cuttings upon completion.										
GLOC		WATE	R LEVEL OBSERVATIONS					Test Pit Started: 1	0/18/2016	Test	Pit Con	npleted: 10/18	3/2016
ORIN		Groundw	vater not encountered	- Ilerr	DC			Excavator: CAT 32	20	Ope	rator: D	&S Drillina	
THISE				4685 S Ash Temp	Ave Ste H e, AZ	4	- 3	Project No.: 65165	5267	Exhi	bit: A	<u>م</u>	

BORI	NG LOO	G N	О.	B2	20			F	Page 1 of 1	1
PROJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	T: U	Inite	ed States Dep	artment	of th	e Inte	erior	
SITE:			G	anu	ip, New Mexic	0				
Sweetwater, Arizona										
ပ္မွ LOCATION See Exploration Plan			NS	ΡE	L	Г %)	(%	f)	ATTERBERG LIMITS	IES
⊆ ♀ Latitude: 36.85336° Longitude: -109.43253°		E T	ATIO	TYI	LTS ⁻	MC (ЧТ (9	TINLT (pc		L FIN
Hde			ERV,	1PLE	ESU ESU	iclea pcf)/	WAT	IGH.	LL-PL-PI	.N EC
C Surface E	Elev.: 1615.1 (m)		WA.	SAN	틒쨘	DD (CO	^D M		PER
SILTY SAND (SM), light brown, loose	ELEVATION (m)									
				Ж	2-2-2/0"					
									NP	15
		1-								
				\mathbf{L}						
1 98	1613.2			X	6-9		4	100		
Boring Terminated at 1.98 Meters	1010.2									
Stratification lines are approximate. In-situ, the transition may be gradu	al.			1	Hammer Type: A	utomatic				
Advancement Method: Hollow Stem Auger					Notes:					
Abandonment Method:										
Borings backfilled with soil cuttings upon completion.										
WATER LEVEL OBSERVATIONS					Poring Storted, 101	1/2016	Deri		plotod: 10/1/0	16
Groundwater not encountered	Prra				Drill Bio: D 50	+/2U10	Borir		Drilling	סול
	4685 S Ash Ave	Ste H-4				007	Drille			
	Tempe, A	VZ			Project No.: 651652	<u>/</u> ۵/	Exhi	dit: A	4-29	

TE	ST PIT LO	DG N	10.	B	21			F	Page 1 of 1	1
PROJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIEN	T: U	nite	d States Dep	artment	of th	e Inte	erior	-
SITE:			9	anu	p, New Mexic	.0				
Sweetwater, Arizona										
ල LOCATION See Exploration Plan			NS	ЪЕ		- %)	6)	f)	ATTERBERG LIMITS	ES
U latitude: 36.852° longitude: -109.43149°		E)	EVE TIO	17	EST TS	LG VC (°	₩ €	NIT (pd		FIN
		H	RVA	ЦЩ.		lear cf)/N	TEN	ΩHΩ		ENT
A A R A R A R A R A R A R A R A R A R A	rface Elev.: 1619.4 (m		VATE	AMF	BE	D (p	× NOS	NEI	LL-PL-PI	ERCI
DEPTH	ELEVATION (m)	29	Ś			0	-		B
SILTY SAND (SM), brown to red-brown						97.4/1.9				
						96.9/2.4			NP	33
						91.0/2.9				
		1-	_			91.3/3.0				
POORLY GRADED SAND WITH SILT (SP-SM)	1618 rav	.2		H						
	lay			Î						
		2-								
		2							NP	22
Tost Pit Terminated at 3 05 Meters	1616	<u>.4</u> 3 -	-							
rest i it reminated at 5.00 meters										
Stratification lines are approximate. In-situ, the transition may be	gradual.		1		Hammer Type: A	Automatic				
Advancement Method: Backhoe					Notes:					
Alternationment Mathead										
Borings backfilled with soil cuttings upon completion.										
Groundwater not encountered					Test Pit Started: 10	/18/2016	Test	Pit Con	npleted: 10/18	/2016
					Excavator: CAT 320	0	Oper	ator: Da	&S Drilling	
	4005 S ASh A Tempe	ve ste H-4 AZ	+		Project No.: 651652	267	Exhit	oit: A	\-30	

		TES	T PIT LO	DG N	10.	Bź	22			F	Page 1 of	1
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIEN	Г: U	nite	d States Dep	artment	of th	e Inte	erior	
	SIT	Έ:			G	anu	p, new wext	:0				
		Sweetwater, Arizona				<u> </u>		1			ATTERREDO	1
	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 36.85041° Longitude: -109.43005° Surfac	ce Elev.: 1622.1 (m	DEPTH (m)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	Nuclear FDT DD (pcf)/MC (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pơf)	LIMITS	PERCENT FINES
		SILTY SAND (SM), red-brown	ELEVATION (m			A		99.6/2.3				
				1-	-			94.6/3.0 94.1/3.7 98.7/2.3			NP	19
				2 -	-							
11/19/16		3.05	1619	<u>.1</u> 3-								
FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 65165267.GPJ TERRACON2015.GDT		Test Pit Terminated at 3.05 Meters										
ARATEL		Stratification lines are approximate. In-situ, the transition may be gra	adual.		I		Hammer Type: A	Automatic	I	I		I
3 IS NOT VALID IF SEP.	Advan Bac Aband Bori	cement Method: khoe onment Method: ngs backfilled with soil cuttings upon completion.					Notes:					
IG LOC		WATER LEVEL OBSERVATIONS					Test Pit Started: 10	/18/2016	Test	Pit Con	npleted: 10/18	/2016
BORIN		Groundwater not encountered	lerra	DC			Excavator: CAT 32	0	Ope	rator: Da	&S Drilling	
THIS			4685 S Ash A Tempe	ve Ste H-4 , AZ	_		Project No.: 65165	267	Exhi	bit: A	A-31	

		TE	ST PIT LO	OG N	10.	B	23			F	Page 1 of	1
ľ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIEN	T: U	nite	d States Dep	artment	of th	e Inte	erior	
ł	SIT	· · · · · · · · · · · · · · · · · · ·			G	allu	p, new wext	;0				
		Sweetwater, Arizona						1	1		ATTERREDO	
	GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 36.84925° Longitude: -109.42832° Sur	rface Elev.: 1632.5 (n	DEPTH (m)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	Nuclear FDT DD (pcf)/MC (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	DERCENT FINES
		DEPTH SILTY SAND (SM), brown, very loose	ELEVATION (n	n)		A		102.4/2.2				
-				1 -				88.9/5.2 88.8/5.0 103.2/1.7			NP	23
•				2-								
11/19/16		3.05	1629	9.4 3 -								
FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 65165267.GPJ TERRACON2015.GDT		Test Pit Terminated at 3.05 Meters										
PARATE		Stratification lines are approximate. In-situ, the transition may be	gradual.				Hammer Type: 7	Automatic				
G IS NOT VALID IF SEF	Advan Bac Aband Bori	cement Method: khoe ionment Method: ings backfilled with soil cuttings upon completion.					Notes:					
VG LOC		WATER LEVEL OBSERVATIONS					Test Pit Started: 10	/18/2016	Test	Pit Con	pleted: 10/18	/2016
BORIN		Groundwater not encountered	lierra	DC		Π	Excavator: CAT 32	0	Ope	rator: Da	&S Drilling	
THIS			4685 S Ash A Tempe	Ave Ste H-4 e, AZ	Ļ		Project No.: 65165	267	Exhi	bit: A	-32	

	TEST)G N	10.	B	24			F	Page 1 of 7	1
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	c	LIEN	T: U	Inite	d States Dep	artment	of th	e Inte	erior	-
SIT	E:			G	anu	ip, new wexic	:0				
	Sweetwater, Arizona										
ŋ	LOCATION See Exploration Plan			4° L	ш		(%)	(ATTERBERG	S
СГО	Latituda: 26.94994° Langituda: 100.42617°		Ē	TO TO TO	ΤYΡ	EST	IC (%	н Т (%	lT (pcf	2	FINE
PHIC	Lanude. 50.04004 Longitude109.42017		L H	RVA	ГШ		lear cf)/N	ATE TEN	ΩHT Π		LN
GRA	Surface	Elev.: 1635.0 (m)		VATE	AMF	EB	D (p	NO2	MEIG	LL-PL-PI	ERCI
Ŭ	DEPTH	ELEVATION (m)		29	Ś			0	_		E E
	<u>SILTY SAND (SM)</u> , red-brown 0.30	1634.7	,				94.8/1.9 98 2/1 8				
	SILTY GRAVEL WITH SAND (SM), red-brown to gray	,	1		A						
	with bedrock boulders throughout										
٥QC			1								
										NP	17
° 0°<											
<u>\$</u>	1.83 Backhoe Bucket at 1.83 Meters	1633.2	2								
	Stratification lines are approximate. In-situ, the transition may be grad	ual.				Hammer Type: A	utomatic				
Advan	cement Method					Notes:					
Bac	khoe										
Aband	onment Method:										
DUI											
	WATER LEVEL OBSERVATIONS					Test Pit Started: 10	/17/2016	Test	Pit Con	npleted: 10/17	/2016
	Grounawater not encountered	ierr a				Excavator: CAT 320)	Oper	rator: Da	&S Drilling	
		4685 S Ash Ave	e Ste H-4 AZ	4		Project No.: 651652	267	Exhil	bit: A	\-33	

	BORING	LO	G N	0. E	32	5			F	Page 1 of ^r	1
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: Ur	nite	d States Depa	artment	of th	e Inte	erior	
SIT	Ē:			Ga	allu	p, New Mexic	0				
	Sweetwater, Arizona										
g	LOCATION See Exploration Plan			NS	Щ	L	۲ %)	(9	L)	ATTERBERG LIMITS	ES
ICLO	Latitude: 36.84883° Longitude: -109.42406°		Ű T	LEVE	TYF	ILTS	r FD1 MC ('	ER NT (9	TINT (pc		L FIN
RAPH			EPT	TER ERV	APLE	ELD	uclea (pcf)/	WAT	IGH.	LL-PL-PI	CEN
GR	Surface Elev.: 163	0N (m)		WA OBS	SAN	ĒĽ	NDD	00	[⊔] ₿		PER
	SILTY SAND (SM), reddish-brown, loose to medium dense				A						
						6-9		٩	96	ND	30
			1 -			0-0		5	50		00
	1.02	1625 1			Х	5-5-7 N=12					
	Boring Terminated at 1.98 Meters	1035.1									
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
Advan Holl	cement Method: ow Stem Auger					Notes:					
Aband	onment Method:										
BUI	ngo baonineu with our cuttingo upon completion.							-			
	WATER LEVEL OBSERVATIONS					Boring Started: 10/5	5/2016	Borir	ng Com	pleted: 10/5/20	016
		51				Drill Rig: D-50		Drille	er: D&S	Drilling	
	4685 S	Ash Ave Tempe, A	e Ste H-4 AZ	Ļ		Project No.: 651652	267	Exhil	bit: A	A-34	

	BORING L	00) N	0.	B2	26			F	Page 1 of 1	1
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	T: U	Inite	ed States Depa	artment	of th	e Int	erior	
SIT	E:	-		G	anu		.U				
	Sweetwater, Arizona									ATTERBERG	
g	LOCATION See Exploration Plan		-	Ч SS SS	ΡE	t	(%)	(%	. G	LIMITS	NES
2	Latitude: 36.84858° Longitude: -109.42185°		۲ ۲	ATIC	Ţ	TES JLTS	MCFD	NT (UNL NL		ΤFI
НЧ			ЦЦ	ER X	PLE	ESU	clea ocf)/	VAT	E E H	LL-PL-PI	EN.
GR	Surface Elev.: 1646.3	(m)	B	NAT	AM	ER		CO^	ū₩		ERC
	DEPTH ELEVATION	(m)		-0	0						٩
	SILTY SAND (SM), light brown, medium dense										
					$\overline{\mathbf{N}}$	5-5-7					
						N=12					
										NP	16
			1-	1							
	1.8316	44.5				9-15		6	101		
	Boring Terminated at 1.83 Meters										
L	Ctratification lines are approximate in aits the transition may be seed at			1		Hommer Triner	utomatic				
	Suannearon mes are approximate. In situ, the transition may be grautial.					папшегтуре: А	utomatic				
Advan	cement Method:					Notes:					
Holl	ow Stem Auger										
Aband	onment Method:										
Bori	ngs backnined with soil cuttings upon completion.										
						Boring Started: 10/4	1/2016	Borir	ng Com	oleted: 10/4/20	016
	Groundwater not encountered	2				Drill Rig: D-50		Drille	er: D&S	Drilling	
	4685 S Ash Tem	Ave a	Ste H-4 Z			Project No.: 651652	267	Exhi	bit: A		

	BORING	G LOO	G N	0.	B2	7			F	Page 1 of	1
PR		С		T: U	nite	d States Dep	artment	of th	e Int	erior	
SIT	 E:			G	iallu	ip, New Mexic	0				
	Sweetwater, Arizona										
g	LOCATION See Exploration Plan	·		NS	Щ	L	L %)	(%	L)	ATTERBERG LIMITS	ES
IC LO	Latitude: 36.84847° Longitude: -109.41971°		Ű.	LEVE	TYF	LTS	- FDT MC (41 (%	TINIT T (pc		
APHI			L T	ER/	IPLE	ESU -	clear pcf)/I	VAT	RY L IGH	LL-PL-PI	
GR	Surface Elev.: 1	1650.5 (m)	ā	WA ⁻ DBSI	SAN	E ĸ	NU NU	COL			PER(
	DEPTH ELEV/ SANDY SILTY CLAY (CL-ML), reddish-brown, very stiff to	ATION (m)		-							_
	hard										
						6-16		17	108	24-17-7	63
			1-								
	1.68	1648.8			\leq	50/4"					
	Boring Terminated at 1.68 Meters										
	Stratification lines are approximate. In-situ, the transition may be gradual.		1	1	1	Hammer Type: A	utomatic	1	1		I
						I					
Advan Holl	sement Method: ow Stem Auger					Notes:					
Aband	onment Method:										
Bori	igs backnined with soil cuttings upon completion.										
						Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016
	Groundwater not encountered	611				Drill Rig: D-50		Drille	er: D&S	Drilling	
	4685	5 S Ash Ave Tempe. A	Ste H-4			Project No.: 651652	267	Exhi	bit: A	A-36	

	BORING	LOO	G N	O.	B2	8			F	Page 1 of	1
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	T: U	nite	d States Depa	artment	of th	e Inte	erior	
SIT	E:			G	anu	p, new mexic	.0				
	Sweetwater, Arizona										
DG	LOCATION See Exploration Plan			NS NS	ЪЕ		. (%	(9	(ATTERBERG LIMITS	ES
CLC	Latitude: 36.84813° Longitude: 109.41751°		Ē	EVE DI DI	TYF	EST	10 (°)	нн (%	NIT (pcf		LIN
PHIC	Landue. 30.04013 Longitude109.41731		L H	RVA	Ľ	T D T	cf)/N	TEN	ΩHT		ENT
GRA	Surface Elev.: 165	57.6 (m)		VATE	AMF	FIEL	D NC	× NO	MEIG	LL-PL-PI	ERCI
Ŭ	DEPTH ELEVATI	ON (m)		29	Ś			0			PE
	POORLY GRADED SAND (SP) , light gray, very dense,										
	moderate cementation, highly weathered sandstone										
					Ж	15-30-50/3"				NP	3
			1-								
	1.68	1655.9				50/5"		2	98		
	Boring Terminated at 1.68 Meters		1			00/0					
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
Advan	cement Method:					Notes:					
Holl	ow Stem Auger										
Aband Bori	onment Method: nas backfilled with soil cuttings upon completion										
DON	ngo sussimica with son catange upon completion.										
	WATER LEVEL OBSERVATIONS					Boring Started: 10/4	4/2016	Borir	ng Com	oleted: 10/4/20	016
		61				Drill Rig: D-50		Drille	er: D&S	Drilling	
	4685 S	Ash Ave Tempe. A	e Ste H-4		_	Project No.: 651652	267	Exhil	oit: A	A-37	

		BORING L	00) N	0.	B2	9			F	Page 1 of	1
ľ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL		T: U	nite	d States Depa	artment	of th	e Inte	erior	
-	TIP	F-	-		G	allu	p, New Mexic	0				
	011	Sweetwater, Arizona										
	00	LOCATION See Exploration Plan		(۲	/EL ONS	ſΡΕ	ŝ)Т (%)	(%)	cf)	ATTERBERG LIMITS	NES
	PHIC L	Latitude: 36.84751° Longitude: -109.41541°		TH (m	R LEV	LE T)	D TES SULTS	ear FC :f)/MC	ATER TENT (Y UNI BHT (p		ENT FI
	GRAF	Surface Elev.: 1663.6	(m)	DEF	WATE	SAMP	FIEL	DD (pc	CON	WEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION SILTY SAND (SM), brown, loose to medium dense	<u>(m)</u>			Ā						
							8-9		5	101	NP	16
				1-	-	Т						
-						\mathbb{N}	4-4-6 N=10					
		1.98 16 Boring Terminated at 1.98 Meters	61.6			(N=10					
0/16												
11/16												
5.GDT												
ON201												
ERRAC												
PJ TE												
5267.G												
6516												
WELL												
OQ-DO												
ART LO												
O SM/												
Е												
EPORI												
NAL R												
ORIGI												
FROM												
ATED		Stratification lines are approximate. In-situ, the transition may be gradual.			1		Hammer Type: A	utomatic				
SEPAR	Adver	coment Method:					Notos:					
S FI CI.	Holl	ow Stem Auger					INULES:					
DT VAL	Ahand	opment Method:										
SIS NC	Bori	ings backfilled with soil cuttings upon completion.										
IG LOC		WATER LEVEL OBSERVATIONS					Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016
BORIN		Groundwater not encountered	5				Drill Rig: D-50		Drille	er: D&S	Drilling	
THIS			Ave S pe, Az	Ste H-4 Z	-		Project No.: 651652	267	Exhil	bit: A	A-38	
	BORING LOG NO. B30											
---------------	---	--------------------------	---------	-----------------	------	----------------------	------------------	-------------	--------------------------------------	---------------------	------	
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	nite	d States Dep	artment	of th	e Int	erior	•	
SIT	E:			G	allu	ip, New Mexic	:0					
	Sweetwater, Arizona											
DG	LOCATION See Exploration Plan			EL NS	ЪЕ	L	۲ %)	(9	f)	ATTERBERG LIMITS	ES	
IC LO	Latitude: 36.84687° Longitude: -109.41337°		l E	ATIO	ΪΫ́	LTS	NC (ЕR ЧТ (9	TINIT (pc			
АРН	,		L 4	TER ERV	IPLE	ESU.	icleai pcf)/l	WAT	T N H S I G H S	LL-PL-PI	CEN	
GR	Surface Elev.	: 1666.3 (m)		WA ⁻	SAN	표密	DD (C	COL			PER(
	DEPTH ELEN SILTY SAND (SM), light brown to light gray, dense to very	VATION (m)		-							_	
	dense											
					X	5-16-23 N=39						
					(NP	12	
			1-									
	1.68	1664.7				50/5"		4	98			
	Boring Terminated at 1.68 Meters											
	Stratification lines are approximate. In-situ, the transition may be gradual.		I	1	1	Hammer Type: A	Automatic		I			
Advan Holl	Ivancement Method: Hollow Stem Auger					Notes:						
Aband	onment Method:											
Bori	ngs backfilled with soil cuttings upon completion.											
	WATER LEVEL OBSERVATIONS					Boring Started: 10/4	4/2016	Borir	ng Com	oleted: 10/4/20	016	
	Groundwater not encountered					Drill Rig: D-50		Drille	er: D&S	Drilling		
	468	85 S Ash Ave Tempe, A	Ste H-4	1		Project No.: 651652	267	Exhil	bit: A	A-39		

	BORING LOG NO. B31 Page 1 of 1											
I	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	C		T: U	nite	d States Dep	artment	of th	e Int	erior	
	217	FE-			G	iallu	ip, New Mexic	0				
		Sweetwater, Arizona										
Ś	2	LOCATION See Exploration Plan		(ns NS	ΡE	t a	اT (%)	(%	ದ)	ATTERBERG LIMITS	NES
		Latitude: 36.84638° Longitude: -109.41118°		TH (m	R LEV	LETY	D TES SULTS	ear FD f)/MC	ATER ENT (r UNI HT (p		NT FI
		Surface Elev.: 1668	8.0 (m)	DEP	WATE	SAMP	FIEL REG	Nucle DD (pc	CONT	VEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION SILTY SAND (SM), brown, medium dense	ON (m)		- 0	, where the second seco						
							11-21		8	104	NP	18
				1-	-	Т						
		1.68 very dense	1666.3	3	-	Ż	50/5"					
		boring reminated at 1.00 meters										
9												
11/19/1												
GDT												
42015.												
RACON												
TERF												
7.GPJ												
16526												
ELL 65												
NO WE												
LOG-												
MART												
GEO S												
RT. (
REPO												
GINAL												
A ORIG												
0 FRO												
RATEC		Stratification lines are approximate. In-situ, the transition may be gradual.			1		Hammer Type: A	Automatic			<u> </u>	
SEPA Ad	van	cement Method:					Notes:					
LID IF	Hol	low Stem Auger										
¶ LO Ah	and	Ionment Method:										
งเอ	Bor	ings backfilled with soil cuttings upon completion.										
		WATER LEVEL OBSERVATIONS					Boring Started: 10/	5/2016	Borir	ng Com	pleted: 10/5/20	016
BORIN	Groundwater not encountered					Π	Drill Rig: D-50		Drille	er: D&S	Drilling	
THIS	4685 S Ash Ave Ste H-4 Tempe, AZ						Project No.: 65165	267	Exhil	bit: A	\-40	

		BORING LOG NO. B32 Page 1 of 1											
ſ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	IEN	T: U	nite	d States Dep	artment	of th	e Inte	erior		
	SIT	·····			G	iallu	ip, New Mexic	0					
	•	 Sweetwater, Arizona											
	00	LOCATION See Exploration Plan		(L	/EL DNS	ŕΡΕ	L. ()Т (%)	(%)	۲ در)	ATTERBERG LIMITS	NES	
	HICL	Latitude: 36.84586° Longitude: -109.40905°		TH (r	R LEV	LETY	D TES SULTS	ear FD f)/MC	ATER ENT (HT (p		NT FI	
	GRAF	Surface Elev.: 1671.7 ((m)	DEP	VATE BSER	AMPI	FIELI	Nucle DD (pc:	CONT	VEIG	LL-PL-PI	ERCE	
-		DEPTH ELEVATION ((m)		>0	S S						₫	
İ							40.00.00						
-						Ж	12-23-23 N=46						
				1 –							NP	16	
-				•									
-		1.68 moderate cementation 16	70.0			1	50/1"						
ſ		Boring Terminated at 1.68 Meters					· · · · · · · · ·						
9/16													
11/1													
5.GDT													
0N201													
RACC													
J TER													
37.GP.													
51652(
ELL 66													
IO WE													
2-00-													
ART I													
EO SN													
<u>п</u>													
POR													
IAL RI													
RIGIN													
SOM C													
ED FF													
PARAT		Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic					
IF SEF	Advan	cement Method: ow Stem Auger					Notes:						
ALID													
	Aband	onment Method:											
I SI DO	Bori	ngs backfilled with soil cuttings upon completion.											
NG LC		WATER LEVEL OBSERVATIONS					Boring Started: 10/4	4/2016	Borir	ng Com	oleted: 10/4/20	016	
BORI							Drill Rig: D-50		Drille	er: D&S	Drilling		
0							Project No.: 651652	267	Exhi	bit: A	A-41		

		BORING LOG NO. B33 Page 1 of 1										
Ī	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLI	EN	Г: U	nite	d States Depa	artment	of th	e Inte	erior	
-	CIT	·c.	-		G	allu	p, New Mexic	0				
	311	E. Sweetwater, Arizona										
Ī	90	LOCATION See Exploration Plan			EL DNS	ΡE	F	т (%)	(%	.	ATTERBERG LIMITS	LES
	HICL	Latitude: 36.84554° Longitude: -109.4069°		TH (m	R LEV	ЕТΥ	DITES	ar FD	ENT (TINUT TUNIT		
	GRAP	Surface Elev.: 1674.5 ((m)	DEP.	VATE	AMPL	FIELD	Nucle D (pcf	CONTI	DRY WEIG	LL-PL-PI	ERCEI
		DEPTH ELEVATION ((m)		>ō	S			0	-		ä
ľ		<u>oren i ovito (oni</u>), igne blown to tan, voly donoc				Î						
							28-50/3"		8	98		44
				1 –		T	20-30/3		0			14
ŀ				-								
		1.68	72.9			\leq	50/5"					
		Boring Terminated at 1.68 Meters										
19/16												
T 11/												
15.GD												
CON20												
ERRA(
PJ TE												
5267.G												
65165												
VELL												
NOV-0												
RT LOC												
SMAF												
GEO												
ORT.												
- REP												
GINAI												
M OR												
0 FRO												
RATE		Stratification lines are approximate. In-situ, the transition may be gradual.	I		I	LI	Hammer Type: A	utomatic		1	l	1
SEPA	Advan	cement Method:					Notes:					
LID IF	Holl	ow Stem Auger										
OT VA	Aband	bandonment Method:										
S IS N(Bori	ngs backfilled with soil cuttings upon completion.										
G LOC		WATER LEVEL OBSERVATIONS					Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016
SORIN	Groundwater not encountered						Drill Rig: D-50	-	Drille	er: D&S	Drilling	-
THISE	4685 S Ash A Tempe						Project No.: 651652	267	Exhi	bit: A	<u>ح</u> ۸-42	

		BORING L	B3	4			F	Page 1 of	1			
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	nite	d States Dep	artment	of th	e Inte	erior	
	ТІР		_		G	iallu	p, New Mexic	0				
	011	Sweetwater, Arizona										
	go	LOCATION See Exploration Plan		<u> </u>	EL	ΡE	F	т (%)	(%	. (ATTERBERG LIMITS	LES
	HICL	Latitude: 36.8451° Longitude: -109.40467°		TH (m	R LEV	Е ТҮ	0 TES	ar FD	TER ENT (HT (pq		
	GRAP	Surface Elev.: 1680.0	0 (m)	DEP	VATEI BSER	AMPI	FIELD	Nucle D (pct	CONT	DRY WEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION	N (m)		>0	ິ ∧				_		ä
		cementation										47
		0.76 1	1679.2				04 50/5"				NP	17
		0.91 SEDIMENTARY BEDROCK - SANDSTONE	679.1				21-50/5"					
		Auger Refusal at 0.91 Meters										
/19/16												
T 11												
5.GD												
0N201												
RACC												
TER												
.GPJ												
65267												
- 651												
WELL												
ON-0												
T LOC												
SMAR												
SEO S												
E.												
EPOR												
IAL R												
RIGIN												
O MC												
D FR(
RATE		Stratification lines are approximate. In-situ, the transition may be gradual.				,	Hammer Type: /	Automatic	•	•		•
SEPA	Advan	cement Method:					Notes:					
П.F	Holl	ow Stem Auger										
T VAL	Abandonment Method											
S NO	Aband Bori	Abandonment Method: Borings backfilled with soil cuttings upon completion.										
LOGI												
RING		Groundwater not encountered					Boring Started: 10/	4/2016	Borir	ng Com	pleted: 10/4/2	016
S BOI							Drill Rig: D-50		Drille	er: D&S	Drilling	
THI		4685 S AS	mpe, A	Z	r.		Project No.: 65165	267	Exhi	bit: A	\-43	

	BORING LOG NO. B35 Page 1 of 1											
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	IEN	Г: U	nite	d States Depa	artment	of th	e Int	erior	
	רוס		-		G	allu	p, New Mexic	0				
	511	L. Sweetwater, Arizona										
	0	LOCATION See Exploration Plan			DNS	ΡE	E.,	Т (%)	(%	cl)	ATTERBERG LIMITS	NES
	HCL	Latitude: 36.84476° Longitude: -109.40253°		TH (m	R LEV	ЕТΥ	D TES SULTS	ar FD f)/MC	ATER ENT (HT (p		NTFIL
	GKAP	Surface Elev.: 1684.8 ((m)	DEP	NATE	AMPI	FIELI	Nucle DD (pct	CONT	DRY	LL-PL-PI	ERCE
		DEPTH ELEVATION (POORLY GRADED SAND WITH SILT (SP-SM), tan to	(m)		-0	S S						
		brown, very dense										
							23-50/4"		3	109	NP	12
				1 -	-	T						
		4.02					26-50/3"					
		Boring Terminated at 1.83 Meters	83.0									
/19/16												
11 11												
2015.G												
ACON												
TERR												
.GPJ												
65267												
.L 651												
0 WEI												
N-90												
IART L												
EO SM												
ц Ш												
EPOR.												
NAL R												
ORIGII												
ROM												
VTED F		Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
EPAR/												
S A	lvan Holl	cement Method: ow Stem Auger					Notes:					
	handsered Mathed											
ION SI	band Bori	onment Method: ngs backfilled with soil cuttings upon completion.										
5 LOG		WATER LEVEL OBSERVATIONS					Boring Started: 10/5	3/2016	Pori-		olated: 10/5/00	016
ORING	Groundwater not encountered						Drill Rig: D-50	012010	Drille	ar D&S	Drilling	
THIS B	4685 S A 7 E						Project No.: 651652	267	Exhil	bit: A	-44	

	BORING LOG NO. B36 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	nite	d States Dep	artment	of th	e Int	erior		
SI	Έ:			U	anu		.0					
	Sweetwater, Arizona			-	, , ,				1	ATTERREDC		
g	LOCATION See Exploration Plan			NS	Ш	F	⊥ ^(%)	(%	. 6	LIMITS	NES	
APHIC L	Latitude: 36.84447° Longitude: -109.4004°		EPTH (m	TER LEV ERVATIC	1PLE TY	ELD TES	Iclear FD	WATER NTENT (°	RY UNIT EIGHT (po	LL-PL-PI	CENT FIN	
GR	Surface Elev.: 168: DEPTH ELEVATIO	9.8 (m) ON (m)		WA.	SAN	Ēĸ	DD (N	° Ō	ABD A		PER	
	POORLY GRADED SAND WITH SILT (SP-SM), light gray, very dense, weak cementation											
					Ж	9-17-43 N=60						
	1.22	1699 6	1-							NP	6	
•••••	SEDIMENTARY BEDROCK - SANDSTONE, gray, highly to moderately weathered	1000.0										
	1.68 Boring Terminated at 1.69 Maters	1688.1	-		X	50/3"		3				
	Boring Terminated at 1.68 Meters											
	Stratification lines are approximate. In-situ, the transition may be gradual.			1		Hammer Type: A	l					
Advan	cement Method:					Notes:						
Hol	ow Stem Auger											
Aband	onment Method: nas backfilled with soil cuttings upon completion											
50	age section of the one of the open of the officient.											
	WATER LEVEL OBSERVATIONS					Boring Started: 10/4	1/2016	Borir	ng Com	oleted: 10/4/20	016	
						Drill Rig: D-50		Drille	er: D&S	Drilling		
	4685 S	ASN AVE Tempe, A	ste H-4 Z	ł		Project No.: 651652	267	Exhi	bit: A	\-45		

	BORING LOG NO. B37										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	Inite	ed States Dep	artment	of th	e Int	erior	
SIT	Ε:	_		G	anu	up, new wexic	:0				
	Sweetwater, Arizona							-			
g	LOCATION See Exploration Plan			NS	ЪЕ	F	ц (%)	(%	. କ	ATTERBERG LIMITS	ES
IIC L(Latitude: 36.84448° Longitude: -109.39813°		E T	ATIC	∠	JLTS'	I FD.	ЧТ С	TINL Dd) T		
RAPH			EPT	ERV	APLE	SESU	uclea (pcf)	WAT	RY ⊟GH	LL-PL-PI	CEN
ц	Surface Elev.: 1691. DEPTH ELEVATIOI	4 (m) N (m)		WA OBS	SAN		Ž O O	S	۳.		PER
	SILTY SAND (SM), brown, medium dense, medium grained										
	-										
						7-8		6	109	NP	19
			1-								
	light brown, fine grained below 4 feet										
	1 98	1689.4	L		X	4-7-11 N=18					
	Boring Terminated at 1.98 Meters		1		Í						
	Stratification lines are approximate. In-situ, the transition may be gradual.			-1	Hammer Type: A	Automatic		•			
Advan	cement Method:					Notes:					
Holl	ow Stem Auger										
A	nement Method										
Bori	ngs backfilled with soil cuttings upon completion.										
	WATER LEVEL OBSERVATIONS					Boring Started: 10/	5/2016	Borir	ng Com	pleted: 10/5/20	016
	Groundwater not encountered					Drill Rig: D-50		Drille	er: D&S	Drilling	-
	4685 S A Te	sh Ave	Ste H-4	1		Project No.: 651652	267	Exhi	bit: A	- -46	

BORING LOG NO. B38 Page 1 of 1										
PROJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	nite	d States Dep	artment	of th	e Inte	erior	•
SITE:			G	anu	p, New Mexic	:0				
Sweetwater, Arizona										
ප LOCATION See Exploration Plan	ľ		R S S	щ		(%)	(9	6	ATTERBERG LIMITS	ES
으 으Latitude: 36.84445°Longitude: -109.39595°		(m)	TIO	TYF	LTS	FDT MC (°	4T (%	INIT (pcf		L FIN
		HTH I	ER I	PLE	ESUI	clear pcf)/N	VATI	RY U IGHI	LL-PL-PI	CENT
O Surface Elev.:	1693.5 (m)	B	WAT	SAM	ᇳᅭ	Nu Nu	CO	ME		PER(
DEPTH ELEN POORLY GRADED SAND WITH SILT, light brown, dense	/ATION (m)									
to very dense, weak to moderate cementation										
				Ж	14-21-28 N=49					
									NP	7
		1-	1							
1.68	1691.8			-	50/1"					
Boring Terminated at 1.68 Meters										
Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Advancement Method: Hollow Stem Auger					Notes:					
Abandonment Method:										
Borings backfilled with soil cuttings upon completion.										
WATER LEVEL OBSERVATIONS					Poring Started: 101	1/2016	Peri		alatad: 10/1/01	116
Groundwater not encountered					Drill Rig: D-50	+/∠U Ib	Borir	IN COM	Drilling	סוי
468	B5 S Ash Ave	Ste H-4			Project No : 651653	267	Exhil	hit [.] 4	4-47	

	BORING LOG NO. B39										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	T: U	nite	d States Dep	artment	of th	e Inte	erior	
SIT	Ε:			G	anu	p, new mexic	:0				
	Sweetwater, Arizona										
ŋ	LOCATION See Exploration Plan			2°F	ш		(%)	((ATTERBERG LIMITS	S
СГО			Ē	TO TO TO	ΤYΡ	EST	IC (%	П Т (%	NIT (pcf	LINITO	FINE
PHIC	Lautude: 30.84453 Longitude: -109.39368		H	2VA VA	Ш	SUL	lear cf)/M	TEN	ЪН		INT
BRA	Surface	e Elev.: 1695.5 (m)	DEF	ATE SSEF	AMF	필묎	D (pc	NO: NO:	DR	LL-PL-PI	RCE
0	DEPTH	ELEVATION (m)		≤¤	ŝ		ā	0	_		Ы
	SILTY SAND (SM), tan, medium dense										
						7-23		15	91	NP	18
	1.00	1604.3	1-								
<u>· [. · ·</u>	SEDIMENTARY BEDROCK - SANDSTONE, tan, high	lly to									
	moderately weathered	1603.0			\mathbf{k}	50/2"					
	Boring Terminated at 1.68 Meters	1093.9				50/3					
	-										
Stratification lines are approximate. In-situ, the transition may be gradual.						Hammer Type: A	Automatic				
Advancement Method:						Notes:					
Holl	Advancement Method: Hollow Stem Auger					Noles.					
Aband	onment Method:										
Bori	ngs backfilled with soil cuttings upon completion.										
	WATER LEVEL OBSERVATIONS	_						- ·			
	Groundwater not encountered	lorr=				Boring Started: 10/	o/2016	Borin	ig Comp	Dieted: 10/5/20	16
			Ste H-4					Drille	er: D&S		
		Tempe, A	Z			Project No.: 651652	267	Exhib	oit: A	-48	

BORING LOG NO. B40											
PROJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	Inite	d States Dep	artment	of th	e Inte	erior		
SITE:			G	allu	ip, New Mexic	:0					
Sweetwater, Arizona											
ල LOCATION See Exploration Plan			ZS NE	Ц		. (%	6)	(ATTERBERG LIMITS	ES	
으 Latitude: 36.84452° Longitude: -109.39134°		Ű.	ATIO	TYF	LTS	· FDT MC (°	ER NT (%	INIT (pc		NIH	
H H H H H H H H H H H H H H H H H H H		<u>+</u>	ER /	IPLE	ESU -	iclear pcf)/I	NAT	RY L IGH	LL-PL-PI	CEN	
G Surface Elev.: 1	1698.3 (m)	ā	WA ⁻ DBSI	SAN	E &	NN NU	COL	ME		PER(
DEPTH ELEVA	ATION (m)		-								
0.91	1697.3			X	23-24-30				NP	14	
SEDIMENTARY BEDROCK - SANDSTONE, brown, highly		1-		$\langle \rangle$	N=34						
					24-50/4"		9	104			
1.83 Boring Terminated at 1.83 Motors	1696.4	-			24-30/4		3	104			
Borning reminiated at 1.05 meters											
Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	Automatic					
Advancement Method: Hollow Stem Auger					Notes:						
Abandonment Method:											
Borings backfilled with soil cuttings upon completion.											
WATER LEVEL OBSERVATIONS					Boring Startad: 10/	1/2016	Pori-		alatad: 10/4/00	116	
Groundwater not encountered						יו ע2וי+	BOLL		Drilling	סול	
4685	5 S Ash Ave	Ste H-4				207	Drille				
1	Tempe, A	٩Z			Project No.: 65165	267	Exhil	oit: A	\-4 9		

		BORING LO	N) .	B4	1			F	Page 1 of	1	
Ī	PF	ROJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLI	ENT	r: U	nite	d States Depa	artment	of th	e Inte	erior	
	SI	TE	-		G	allu	p, New Mexic	0				
	0	Sweetwater, Arizona										
	00	LOCATION See Exploration Plan		(r	/EL DNS	ΡE	st s)Т (%)	(%)	cf)	ATTERBERG LIMITS	NES
	HICL	Latitude: 36.84592° Longitude: -109.39138°		TH (T	R LEV	LETY	D TES SULTS	ear FD f)/MC	ATER TENT (r UNI HT (p		
	GRAF	Surface Elev.: 1698.0 ((m)	DEP	WATE	SAMP	FIEL REG	Nucle DD (pc	CONT	VEIG	LL-PL-PI	ERCE
		DEPTH ELEVATION (POORLY GRADED SAND WITH SILT (SP-SM), light	(m)		-0	 ▲						
		brown, very dense										
							41-50/5"				NP	6
				1 –		Τ						
						\mathbf{N}	10-30-50/4"					
-		1.98 169 Boring Terminated at 1.98 Meters	96.0									
/16												
11/19												
5.GDT												
ON201												
ERRAC												
PJ TE												
5267.G												
. 6516												
WELL												
OG-NO												
ART LO												
O SM												
п. П												
EPOR												
NAL R												
ORIGI												
FROM												
ATED		Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
SEPAF	Adva	ncement Method:					Notes [.]					
LIDIF	Hollow Stem Auger						10003.					
OT VAI	Aban	bandonment Method:										
G IS N	Bo	Borings backfilled with soil cuttings upon completion.										
NG LO.		WATER LEVEL OBSERVATIONS					Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016
BORI							Drill Rig: D-50		Drille	er: D&S	Drilling	
ග 4685 S Ash Ave Ste H-4 Tempe, AZ							Project No.: 651652	267	Exhil	bit: A	A-50	

	BORING LOG NO. B42 Page 1 of 1												
PF	ROJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIE	NT: L	Jnite	ed States Dep	artment	of th	e Inte	erior				
SI	TE·	-	C	Gallu	ip, New Mexic	0							
	Sweetwater, Arizona												
ÖG	LOCATION See Exploration Plan		,EL	ΡE	t a	T (%)	(%	۲ در)	ATTERBERG LIMITS	NES			
HICL	Latitude: 36.8475° Longitude: -109.39159°	1H (m	R LEV	LETY	D TES	ar FD f)/MC	ATER ENT (HT (p		NT FII			
GRAP	Surface Elev.: 1697.2	(m) dig	NATE	AMPI	FIELI	Nucle DD (pc:	CONT	DRY	LL-PL-PI	ERCE			
	DEPTH ELEVATION (SILTY SAND (SM) light brown to brown loose	(m)	>0	s S						□			
	<u></u> , <u></u> , ugu zi ci ci ci ci ci ci ci ci ci ci ci ci ci				445								
				Ж	4-4-5 N=9								
		1	_						NP	19			
	1.68 gray, very dense	95.5			50/6"		5	102					
	Boring Terminated at 1.68 Meters												
19/16													
11/ 11/													
115.GD													
CONZC													
ERRAC													
PJ TE													
5267.G													
65 165													
VELL													
NON-0													
L L OC													
SMAR													
GEO													
ORT.													
REP													
GINAL													
M ORI													
DFRO													
RATEL	Stratification lines are approximate. In-situ, the transition may be gradual.			1	Hammer Type: 7	Automatic				1			
SEPA	ncement Method:				Notes:								
≝ Ho ⊖	Ilow Stem Auger												
DT VAL	deerset Mathed												
S Aban S Bo	aonment Methoa: rings backfilled with soil cuttings upon completion.												
5 LOG					Boring Started: 10/	4/2016	Rorin	na Com		016			
ORINC	Groundwater not encountered	ar			Drill Rig: D-50	10 10	Drille	er D&S	Drilling	010			
HISB	4685 S Ash	Ave Ste H	1-4		Project No : 65165	267	Exhit	bit: 4					

	BORING LOG NO. B43 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CI		T: U	Inite	ed States Dep	artment	of th	e Int	erior	•	
SIT	E:	-		G	anu	ip, new wexic	0					
	Sweetwater, Arizona											
ŋ	LOCATION See Exploration Plan			R S	Щ		. (%		6	ATTERBERG LIMITS	ES	
сгс	Latitude: 36.84927° Longitude: -109.39117°		(m)	ATIO	ТҮР	LTS	AC (°	4T (%	NIT (pd		- FIN	
APHI			ΗTΗ	ER I	PLE	ESUI 1	clear pcf)/N	VATI	지 에너머머머머머머머머머머머머머머머머머머머머	LL-PL-PI	ENT	
GR	Surface Elev.: 1696.7	(m)	B	WAT	SAM	음쓰	NN (IN	CO	۵ÿ		PERC	
	DEPTH ELEVATION SILTY SAND, light brown to brown, very dense, fine to	<u>(m)</u>										
	medium grained sand				I							
					\mathbf{X}	23-50/3"		6	111	NP	19	
			1 -									
						25-50/4"						
	1.83 16 Boring Terminated at 1.83 Meters	94.8			\vdash	20 00/4						
Stratification lines are approximate. In-situ, the transition may be gradual.					1	Hammer Type: A	utomatic	1	1			
A -1-	normant Mathead					N-4-						
Advan Holl	cement method: ow Stem Auger					Notes:						
Aband	onment Method:											
Bor	ngs backnined with soil cullings upon completion.											
						Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016	
		5			Π	Drill Rig: D-50		Drille	er: D&S	Drilling		
	4685 S Ast Tem	n Ave pe, A	Ste H-4 Z			Project No.: 651652	267	Exhi	bit: A	A-52		

	BORING LOG NO. B44 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIE	NT:	Unit	ed States Dep	artment	of the	e Inte	erior		
SIT	E:				Galli	up, New Mexic	0					
	Sweetwater, Arizona											
g	LOCATION See Exploration Plan				ы Б		. (%	(9	Ē.	ATTERBERG LIMITS	ES	
сго	Latitude: 36.851° Longitude: -109.39086°		Ē	EVE E	ē ≚	EST TS	AC (9	H 11 (%	(pct		EIN	
Πď			PTH	ERL	PLE		cf)/N	MATEN TEN	PH	II-PI-PI	ENT	
GR∕		Surface Elev.: 1693.4 (m) 🛛 🖁	VAT	BSE	E E E	N Du C	> Z O	NEP N		ERC	
	DEPTH	ELEVATION (n)	-	0 0						٩	
	<u>SILTY SAND (SM)</u> , light brown, very dense				Î							
					\mathbb{N}	16-26-37						
					Λ	N=63						
			1							NP	14	
			1									
					. I ∳							
	1.68	169	1.7		X	50/4"						
	Boring Terminated at 1.00 Meters											
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	Automatic					
	Stratification lines are approximate. In-situ, the transition may be gradual.					21						
Advan	ancement Method:					Notes:						
1101	Sw Stem Auger											
Abond	mont Mathadi											
Bori	ngs backfilled with soil cuttings upon completion.											
	WATER EVEL OBSERVATIONS							1_				
	Groundwater not encountered					Boring Started: 10/4	4/2016	Boring	g Comp	oleted: 10/4/20	016	
		4685 S Ash	Ave Ste H	1-4		Drill Rig: D-50		Driller	r: D&S	Drilling		
		Temp	e. AZ			Project No.: 65165	267	Exhibi	it: A	\-53		

	BORING LOG NO. B45 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	C	LIEN	Г: U	Inite	ed States Depa	artment	of th	e Inte	erior		
SIT	Έ:			G	anu		U					
	Sweetwater, Arizona			r						ATTERRERO		
g	LOCATION See Exploration Plan		Ē	NS NS	ΡE	E.e.	T (%)	(%	ct) -	LIMITS	VES	
HC L	Latitude: 36.8528° Longitude: -109.39066°		ц Ц	& LEV	E T)	ULTS	ar FD VMC	ENT (UNI T(p		IT FI	
API	Surface Flow: 1690 F	(m)	DEPT	SER	MPL	RESI	lucle; (pcf,	WA	EIG	LL-PL-PI	SCEN	
Ū	DEPTH ELEVATION	(m)		Зä	SA	Ľ.	~0	ö	>		PEF	
	POORLY GRADED SAND WITH SILT (SM), brown, very											
	dense											
						16 50/5"		6	111		11	
			1 –			10-30/3		0				
			•									
	1.52 16	688.0										
	SANDY SILTY CLAY (ML), brown, very dense				X	13-13-50/1"						
	1.98 16 Boring Terminated at 1 98 Motors	687.6										
	bonng reminated at 1.50 meters											
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic					
Advan	cement Method:					Notes:						
Holl	ow Stem Auger											
Aband Bori	onment Method: ngs backfilled with soil cuttings upon completion.											
	Groundwater not encountered					Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016	
		0				Drill Rig: D-50		Drille	er: D&S	Drilling		
<u> </u>	4685 S Asi Tem	n Ave	Ste H-4 Z			Project No.: 651652	267	Exhil	oit: A	\-54		

	BORING LOG NO. B46 Page 1 of 1										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	T: U	Inite	ed States Dep	artment	of th	e Int	erior	
SIT	Έ:			G	anu	ip, new mexic	:0				
	Sweetwater, Arizona										
ŋ	LOCATION See Exploration Plan			NR NR	Ē		(%	()		ATTERBERG LIMITS	S
IIC LO	Latitude: 36.85444° Longitude: -109.38988°		Ш Ш Ш	ATION	Е ТҮР	TEST JLTS	ar FDT /MC (%	TER INT (%	UNIT IT (pcf	Limito	IT FINE
BRAPH	Surface Elev.: 1689.4	(m)	DEPT	ATER SERV	AMPLI	FIELD RESU	Nuclea D (pcf)	WAT	DRY VEIGH	LL-PL-PI	RCEN
	DEPTH ELEVATION	(m)		≥ö	s/		0	0	>		Ц
	very dense										
			1-	_	\mathbb{X}	5-10-17 N=27				NP	14
	1.22 16 SEDIMENTARY BEDROCK - SANDSTONE, gray,	688.2									
	weathered	387 6				39-50/3"		3	102		
	Boring Terminated at 1.83 Meters	507.0									
	Stratification lines are approximate. In-situ, the transition may be gradual.		I	1	1	Hammer Type: A	utomatic		I		
						Note					
Holl	ow Stem Auger					Notes:					
Aband	onment Method:										
Bori	ngs backfilled with soil cuttings upon completion.										
	WATER LEVEL OBSERVATIONS					Boring Started: 10/4	4/2016	Borir	ng Com	oleted: 10/4/20	016
	Groundwater not encountered	5				Drill Rig: D-50		Drille	er: D&S	Drilling	
	4685 S As Terr	h Ave	Ste H-4	-		Project No.: 651652	267	Exhil	bit: A	\-55	

	TEST PIT LOG NO. B47 Page 1 of 1										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4		CLIE	NT: U	Unit	ed States Dep	artment	of th	e Inte	erior	•
SIT	E:			,	Gail	up, new mexic	;0				
	Sweetwater, Arizona										
g	LOCATION See Exploration Plan			EL Mo	PE	L	Г %)	%)	f)	ATTERBERG LIMITS	IES
IC LO	Latitude: 36.85616° Longitude: -109.38922°		L (E)			LTS	MC (ER VT (%	TINLT T (pc		L FIN
APHI				ER	빌님	ESU -	clear pcf)/I	VAT	IGH ⁻	LL-PL-PI	EN I
GR/		Surface Elev .: 1674.6 (r	n) 🛛	WAT	SAM	문운	NN CO	CO	MED		ERC
	DEPTH SILTY SAND (SM) red-brown	ELEVATION (r	n)	<u> </u>			92 8/2 5				ш
	<u></u> ,		1		I		85.4/4.3 85.7/4.5 92.7/2.5			NP	24
	1.98	167	2.7								
	Test Pit Terminated at 1.98 Meters										
Stratification lines are approximate. In-situ, the transition may be gradual						Hammer Type ⁻ A	Automatic				
	,	,									
Advan	dvancement Method:					Notes:					
Dau	ckhoe										
Ahand	Ionmont Mathod										
Bori	ngs backfilled with soil cuttings upon completion.										
	Groundwater not encountered	There				Test Pit Started: 10	/17/2016	Test	Pit Con	npleted: 10/17	/2016
		4685 S Ash	Ave Ste H	U -4		Excavator: CAT 32	0	Oper	rator: Da	&S Drilling	
		Temp	a. AZ	1		Project No.: 65165	267	Exhit	bit: A	A-56	

	TEST PIT LOG NO. B48 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	C	LIEN	T: U	nite	ed States Dep	artment	of th	e Inte	erior	<u> </u>	
SIT	E: Swootwator Arizona			G	anu		.0					
DG	LOCATION See Exploration Plan			NS	ЪЕ	F	Г %)	(%	£)	ATTERBERG LIMITS	LES	
GRAPHIC L (Latitude: 36.85793° Longitude: -109.38876° Surface Elev.: 1681.2	2 (m)	DEPTH (m)	VATER LEVI BSERVATIC	AMPLE TY	FIELD TES'	Nuclear FD ⁻ D (pcf)/MC (WATER CONTENT (9	DRY UNIT WEIGHT (po	LL-PL-PI	ERCENT FIN	
	DEPTH ELEVATION SILTY SAND (SM), red-brown, loose to medium dense	N (m)		>ō	S A		99.8/1.7				ä	
			1 –				100.0/1.7 95.3/3.4 95.4/3.1			NP	17	
	weak cementation		2 -	-						NP	32	
	excavating becomes harder below 9 feet	678.1	<u>م</u> -									
	Test Pit Terminated at 3.05 Meters		0									
Other the state are accounted to pits, the transition may be gradual						Hamman Turnay						
Stratification lines are approximate. In-situ, the transition may be gradual.						Hammer Type: A	Automatic					
Advan Bac	cement Method: khoe					Notes:						
Aband Bori	ndonment Method: prings backfilled with soil cuttings upon completion.											
	WATER LEVEL OBSERVATIONS					Toot Dit Storted: 40	17/2010	Test		aploted: 10/17	120.10	
	Groundwater not encountered	7				Excavator: CAT 32	0	One	rator: D	S Drilling	2016	
	4685 S As	sh Ave	Ste H-4			Project No.: 651652	267	Operator: D&S Drilling Exhibit: A-57				

	TEST PIT L	OG N	10.	B	49			F	Page 1 of	1
PR	COJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIEN	T: U	Inite	d States Dep	partment	of th	e Inte	erior	
SI	ΓE:		Ģ	allu	ip, New Mexi	CO				
	Sweetwater, Arizona						1	1		
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 36.85947° Longitude: -109.3877° Surface Elev.: 1683.4 ((m) DEPTH (m)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	Nuclear FDT DD (pcf/MC (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	LIMITS	PERCENT FINES
	DEPTH ELEVATION (SANDY SILT (ML), red-brown	m)				95.5/1.7				<u>ц</u>
		1-		V		96.1/6.3 95.6/6.1 95.7/2.1			NP	5
		2 -	_							
	2.44	<u>31.0</u>		1					NP	3(
	Strauncation lines are approximate. In-situ, the transition may be gradual.				Harnmer Type:	Automatic				
Advar Bac Abanc Bor	Icement Method: Skhoe Jonment Method: ings backfilled with soil cuttings upon completion.				Notes:					
					Test Pit Started: 1	0/17/2016	Test	Pit Con	npleted: 10/17	/201
		30		Π	Excavator: CAT 32	20	Ope	rator: D	&S Drilling	
	4685 S Ash Temp	Ave Ste H-4 be, AZ	4		Project No.: 65165	5267	Exhi	bit: A	A-58	

	BORING LOG NO. B50 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIE	NT	: U	nite	d States Dep	artment	of th	e Inte	erior		
SIT	E:			G	anu	p, new mexic	0					
	Sweetwater, Arizona				,,							
g	LOCATION See Exploration Plan			ЯS	Щ	F	۲ (%	(%	Ĵ.	ATTERBERG LIMITS	IES	
IC L(Latitude: 36.86095° Longitude: -109.38648°			ATIO	Σ	LTS ⁻	nc (NT (9	TINLT (pc		L FIN	
ЧHЦ				ER/	РГЕ	- ILD -	clear ocf)/I	VAT	J Y L GH	LL-PL-PI	LN II	
GR/	Surface Elev.: 1683.4 (m) 🛱	5	WAT	SAM		N DC	COV			ERC	
	DEPTH ELEVATION (m)		- 0							٩.	
	SILT F SAND (SM), brown, loose to medium dense											
					Х	2-3-3/0"						
										NP	24	
		1	I									
	stratified thin layers of sandy lean clay at about 5 feet.	16				7-12		8	104			
	Boring Terminated at 1.83 Meters	,1.0	f									
	Stratification lines are approximate. In situ, the transition may be aredual					Hammer Type: A	utomatic					
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type. P	utomatic					
Advan	Advancement Method:					Notes:						
Holl	JW Stem Auger											
Aband Bori	onment Method: ngs backfilled with soil cuttings upon completion.											
								<u> </u>				
	Groundwater not encountered					Boring Started: 10/4	1/2016	Borir	ng Com	oleted: 10/4/20	016	
						Drill Rig: D-50		Drille	er: D&S	Drilling		
	4085 S ASH Temp	e, AZ	11-4			Project No.: 651652	267	Exhil	bit: A	\-5 9		

	BORING LOG NO. B51 Page 1 of 1											
F	ROJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIEN	IT: U	nite	d States Dep	artment	of th	e Inte	erior			
	ITE		G	iallu	p, New Mexic	0						
	Sweetwater, Arizona											
U U	LOCATION See Exploration Plan		EL DNS	ΡE	t.	Т (%)	(%	- cf)	ATTERBERG LIMITS	NES		
UH UH	Latitude: 36.86241° Longitude: -109.38526°	TH (m	R LEV	LETY	D TES SULTS	ar FD f)/MC	ATER ENT (HT (p		NTFIL		
GRAP	Surface Elev.: 1686.9 (m) dig	VATE	AMPI	FIELD	Nucle D (pct	CONT	DRY WEIG	LL-PL-PI	ERCE		
	DEPTH ELEVATION (m)	>0	ω Λ						Ē		
	dense			Ī								
				Ļ	21_50/3"		1	113				
		1 -	_		21-00/0		-	110		4		
	light brown				21-50/4"							
	1.83 168 168 168	35.1		\vdash	21-00/4							
19/16												
T 11/												
15.GD												
CON20												
IRRAC												
PJ TE												
267.G												
65 165												
VELL												
NO V												
TLOG												
SMAR												
GEO												
RT.												
REPC												
GINAL												
A ORIG												
FRO												
2ATEC	Stratification lines are approximate. In-situ, the transition may be gradual.			1	Hammer Type: A	utomatic						
SEPAF	ancement Method				Notes							
≝ F ⊒	ollow Stem Auger				110165.							
S Aba	ndonment Method: orings backfilled with soil cuttings upon completion.											
5 LOG	WATER LEVEL OBSERVATIONS				Boring Started: 10//	1/2016	Borin			016		
	Groundwater not encountered				Drill Rig. D-50	72010	Drille	er D&S	Drilling	010		
IHIS B	4685 S Ash Temp	Ave Ste H-	4		Project No.: 651652	267	Exhil	bit: 4				

ſ		BORING LOG NO. B52 Page 1 of 1											
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLI	EN	r: U	nite	d States Dep	artment	of th	e Inte	erior		
-	517		-		G	allu	p, New Mexic	:0					
	011	Sweetwater, Arizona											
	00	LOCATION See Exploration Plan		ê	лс NS	ΡE	t.	іТ (%)	(%	ط) ط	ATTERBERG LIMITS	NES	
	HICL	Latitude: 36.8639° Longitude: -109.38408°		TH (m	R LEV	ЕТΥ	D TES	ar FD f)/MC	ATER ENT (HT (p		NT FII	
	GRAF	Surface Elev.: 1690.8 ((m)	DEP	NATE BSER	AMPI	FIELI	Nucle DD (pc:	CONT	DRY	LL-PL-PI	ERCE	
		DEPTH ELEVATION (POORLY GRADED SAND WITH SILT (SP-SM), tan, very	(m)		-0	<i></i>						_ ₽_	
		dense											
							12-26-41				NP	6	
				1-		\mathbb{A}	N=67						
		4.02					23-50/3"		2	102			
ľ		Boring Terminated at 1.83 Meters	88.9										
9													
1/19/1													
GDT 1													
12015.													
RACON													
TERF													
7.GPJ													
16526													
SULL 65													
NO WE													
LOG-													
MART													
SEO S													
RT.													
REPO													
SINAL													
A ORIG													
FROM													
RATEC		Stratification lines are approximate. In-situ, the transition may be gradual.			I		Hammer Type: A	Automatic				1	
SEPA	Advan	cement Method:					Notes:						
LIDIF	Holl	ow Stem Auger											
OT VA	Aband	onment Method:											
N SI D	Bori	ngs backfilled with soil cuttings upon completion.											
1G LOC		WATER LEVEL OBSERVATIONS					Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016	
BORIN		Groundwater not encountered	2				Drill Rig: D-50		Drille	er: D&S	Drilling		
THIS			Ave St pe, AZ	e H-4	_	_	Project No.: 651652	267	Exhi	bit: A	\-61		

	BORING LOG NO. B53 Page 1 of 1										
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	Г: U	nite	ed States Depa	artment	of th	e Inte	erior	-
SIT	Έ:			G	Janu	ip, new mexic	0				
	Sweetwater, Arizona										
g	LOCATION See Exploration Plan			чs	Щ	L	(%)	(9	(J	ATTERBERG LIMITS	ES
СГС	Latitude: 36.86535° Lonoitude: -109.38278°		E)	UTIO	17	ES1 TS	FD1 AC ('	ΠΞR (%	NIT (pc		L FIN
Ήď			РТН	ERL	LE	LD T SUL	cf)/N	ATE TEN	CY U GHT		ENT
GRA	Surface Elev.: 1694.4	(m)	DE	VAT	AMF	ER	D (p	NON S	MEI		ERC
Ū	DEPTH ELEVATION	(m)		>ō	S		Ω	0			B
	POORLY GRADED SAND (SP), light brown, very dense										
						34-50/5"		4	102	NP	4
			1-								
	1 69 14	302 7			\mathbf{F}	50/4"					
	Boring Terminated at 1.68 Meters	592.1				30/4					
						Line Trans					
	Sulanneauon lines are approximate. In-situ, the transition may be gradual.					натитег туре: А	utomatic				
Advan	cement Method:					Notes:					
Holl	vancement Method: Hollow Stem Auger										
Aband	onment Method:										
Bori	ngs backfilled with soil cuttings upon completion.										
	WATER LEVEL OBSERVATIONS					Boring Started: 10/4	/2016	Borir	ng Comi	oleted: 10/4/20	016
	Groundwater not encountered	2				Drill Rig: D-50		Drille	er: D&S	Drilling	
	4685 S Asl Tem	h Ave	Ste H-4 Z			Project No.: 651652	267	Exhil	oit: A	<u>ح</u>	

	BORING LOG NO. B54 Page 1 of 1											
Р	ROJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIE	NT: L	Jnite	ed States Dep	artment o	of th	e Inte	erior			
9	ITE	-	C	Gallu	ip, New Mexic	:0						
	Sweetwater, Arizona											
g	LOCATION See Exploration Plan	(/EL	/PE	D. C)Т (%)	(%)	r cf)	ATTERBERG LIMITS	NES		
PHIC L	Latitude: 36.86681° Longitude: -109.38162°	HT (m	R LEV		D TES	ear FC :f)/MC	ATER TENT (Y UNI BHT (p		ENT FI		
GRAF	Surface Elev.: 1699.5 ((m)	WATE	SAMP	FIEL	Nucl DD (po	CONT	DR' WEIG	LL-PL-PI	ERCE		
	DEPTH ELEVATION (SILTY SAND (SM), light brown, dense to very dense	<u>m)</u>	- 0	, ,						<u>п</u>		
				∇	16-18-18				NP	17		
		1			N=36							
	1.83	97.6			30-50/2"		3	100				
	Boring Terminated at 1.83 Meters											
/16												
11/19												
5.GDT												
DN201												
RRACC												
J TE												
267.G												
65 165												
NELL												
G-NO												
RT LO												
) SMAF												
GEO												
PORT.												
AL REI												
RIGIN												
O MOX												
	Stratification lines are approving to lo situ the tractiling mouths and us				Hammar Turner A	lutomotic						
PARA	Straumcauori lines are approximate. In-situ, the transition may be gradual.					AULOMATIC						
H SH	ancement Method: ollow Stem Auger				Notes:							
LON Aba	ndonment Method: orings backfilled with soil cuttings upon completion.											
					Device Oferst 1 457		D - ·	- C -		040		
	Groundwater not encountered				Drill Big: D 50	0/2016	Borin		Drilling	U16		
HIS B(4685 S Ash	Ave Ste H	1-4		Project No · 651652	267	Exhil	bit /				

	BORING LOG NO. B55 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	T: L	Inite	ed States Dep	artment	of th	e Inte	erior		
SIT	Ē:			Ċ	anu	ip, new wexic	:0					
	Sweetwater, Arizona											
ŋ	LOCATION See Exploration Plan			- SN	Щ		. (%	(9	6	ATTERBERG LIMITS	ES	
сго	Latitude: 36.86829° Longitude: -109.3803°		E)	IOI I	TYF	EST -	FDT AC (5	₩ 11 (%	NIT (pcf		FIN	
Ηď			LTT	ERL	PLE		cf)/N	VATE	CHI	II-PI-PI	ËNT	
GR/	Surface Elev.: 1704.6	(m)	B	WAT OBSE	SAM	필路	DD (p	CON	VEI		PERC	
	POORLY GRADED SAND WITH SILT (SP-SM), light brown, very dense, weak cementation	(11)										
			1_		T	50/4"				NP	7	
						36-50/2"						
	17.83 Boring Terminated at 1.83 Meters	02.7	+									
	Stratification lines are approximate. In-situ, the transition may be gradual.			1	-1	Hammer Type: A	Automatic		I			
					-							
Advan Holl	Ilow Stem Auger					Notes:						
Aband	onment Method:											
Bor	ngs backfilled with soil cuttings upon completion.											
	WATER LEVEL OBSERVATIONS			_		Boring Started: 10/4	1/2016	Borir	ng Com	oleted: 10/4/20	016	
			Stall		Π	Drill Rig: D-50		Drille	er: D&S	Drilling		
	4685 S Ash Tem	Ave be, A	: 5te H-4 VZ	÷		Project No.: 651652	267	Exhil	bit: A	\-64		

	BORING LOG NO. B56											
ľ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLI	EN	r: U	nite	d States Dep	artment	of th	e Inte	erior	
	SIT	· · · ·	-		G	allu	p, New Mexic	0				
		Sweetwater, Arizona										
	0G	LOCATION See Exploration Plan		(ר	/EL ONS	ſΡΕ	L. G)T (%)	(%)	r cf)	ATTERBERG LIMITS	NES
	HICL	Latitude: 36.8698° Longitude: -109.37915°		TH (m	R LEV	LE T)	D TES SULTS	ear FD f)/MC	ATER ENT (r UNI HT (p		NTFI
	GRAF	Surface Elev.: 1709.3 ((m)	DEP	WATE	SAMP	FIEL REG	Nucle DD (po	CONT	DRY	LL-PL-PI	ERCE
		DEPTH ELEVATION (POORLY GRADED SAND WITH SILT (SP-SM), light	(m)		- 0	, second						
		brown, medium dense					5-9-19					
						Д	N=28					
				1-							NP	6
		1.68 very dense 170	07.7				50/5"					
		Boring Terminated at 1.68 Meters										
~												
1/19/16												
DT 1												
2015.0												
ACON												
TERR												
GPJ												
65267												
.L 651												
0 WEI												
N-90												
IART L												
EO SN												
⊢.												
EPOR												
NAL R												
ORIGI												
ROM												
ATED F		Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic				
EPAR												
DIFS	Advan Holl	cement Method: ow Stem Auger					Notes:					
T VALI.												
.ON SI	Aband Bori	onment Method: ngs backfilled with soil cuttings upon completion.										
5 LOG		WATER LEVEL OBSERVATIONS					Boring Started: 10//	5/2016	Rorin	na Com	leted: 10/5/20	016
ORING	Groundwater not encountered						Drill Rig: D-50	<i>512</i> 010	Drille	er: D&S	Drilling	010
THIS B		4685 S Ash Temp	Ave St pe, AZ	e H-4			Project No.: 651652	267	Exhil	oit: A	A-65	

	BORING LOG NO. B57 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	Inite	d States Depa	artment	of th	e Int	erior		
SIT	 E:	_		G	allu	ip, New Mexic	0					
	Sweetwater, Arizona											
DG	LOCATION See Exploration Plan			NS	ΡE	Г	Г %)	(%	f)	ATTERBERG LIMITS	IES	
IC LO	Latitude: 36.87133° Longitude: -109.3779°		Ű.	ATIO	īΥ	LTS	r FD1 MC (AER (9	TINL pq) T		LFIN	
APH			EPTF	TER (1PLE	ELD .	iclea pcf)/	WAT	T P I	LL-PL-PI	CEN	
GR	Surface Elev.: 1713.4	4 (m)	ā	WA ⁻ OBSI	SAN	ΠR	DD (CO			PER(
	POORLY GRADED SAND WITH SILT (SP-SM), tan,	V (m)			T							
	dense to very dense											
						24-55		3	108	NP	12	
			1-	1								
	1.68 1	711.8			$\mathbf{\dot{\succ}}$	50/5"						
	Boring Terminated at 1.08 meters											
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic					
Advan Holl	vancement Method: follow Stem Auger					Notes:						
Aband	onment Method:											
Bori	ngs backfilled with soil cuttings upon completion.											
	WATER LEVEL OBSERVATIONS					Boring Started: 10/4	/2016	Borir	ng Com	pleted: 10/4/20	016	
	Groundwater not encountered					Drill Ria: D-50	-	Drille	er: D&S	Drillina		
		sh Ave	Ste H-4 Z			Project No.: 651652	267	Exhi	bit:	A-66		

		BORING LOG NO. B58 Page 1 of 1											
	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	IEN	T: U	nite	d States Dep	artment	of th	e Inte	erior		
-	ТІР				G	iallu	p, New Mexic	:0					
	511	Sweetwater, Arizona											
Γ	90	LOCATION See Exploration Plan		<u> </u>	NS NS	ΡE	t.	Т (%)	(%	- cf)	ATTERBERG LIMITS	NES	
	HICL	Latitude: 36.87284° Longitude: -109.3768°		TH (m	R LEV	Е ТҮ	D TES	ar FD f)/MC	VTER ENT (HT (p		NTFI	
	GRAP	Surface Elev.: 1720.8 ((m)	DEP	NATE	AMPI	FIELI	Nucle DD (pct	CONT	DRY WEIG	LL-PL-PI	ERCE	
		DEPTH ELEVATION (POORLY GRADED SAND (SP), light brown, very dense	<u>(m)</u>		-0	0			_				
						Ж	50/5"						
				1 -	_						NP	4	
		1.68 17	19.2				50/5"						
		Boring Terminated at 1.68 Meters											
/19/16													
DT 11													
015.GI													
CON2													
ERRA													
GPJ T													
35267.													
. 6516													
WELL													
OG-NO													
RT LC													
AMS C													
Ğ													
PORT.													
AL REI													
RIGIN													
IO MO													
ED FR													
ARATI	_	Stratification lines are approximate. In-situ, the transition may be gradual.	_	_	_	_	Hammer Type: A	utomatic	_	_	_	_	
IF SEP	dvan Holi	cement Method:					Notes:						
ALID	100												
NOT <	band	onment Method:											
JG IS I	Bori	ngs backfilled with soil cuttings upon completion.											
NG LC		WATER LEVEL OBSERVATIONS			_		Boring Started: 10/5	5/2016	Borin	ng Com	oleted: 10/5/20	016	
BORI			0				Drill Rig: D-50		Drille	er: D&S	Drilling		
THIS		4685 S Ash Temp	ŀ		Project No.: 651652	267	Exhit	bit: A	4-67				

	BORING LOG NO. B59 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С		T: U	Inite	d States Dep	artment	of th	e Inte	erior		
SIT	Έ:	_		G	iallu	IP, New Mexic	:0					
	Sweetwater, Arizona											
g	LOCATION See Exploration Plan			NS	Ц	L	۲ %)	(%	f)	ATTERBERG LIMITS	ES	
CLO	Latitude: 36.87434° Longitude: -109.37552°		(E)	LEVE	TYF	LTS	· FDT MC (LT (%	INIT (pd		NIL	
АРН				ER (IPLE	ESU.	icleai pcf)/l	WAT	T N H S I G H S	LL-PL-PI	CEN	
GR	Surface Elev.: 1726. DEPTH ELEVATIO	0 (m) N (m)		WA ⁻ OBSI	SAN	플포	DD (C	COL			PER(
	POORLY GRADED SAND WITH SILT (SP-SM), light brown, very dense, weak cementation											
			1_		X	36-50/2"		4	120	NP	11	
			1									
	1.68	1724.3			\mathbf{F}	50/4"						
	Boring Terminated at 1.68 Meters											
	Stratification lines are approximate. In situ, the transition may be gradual					Hammer Type: A	utomatic					
						Hammer Type. P	atomatic					
Advan	cement Method:					Notes:						
HOI	w Stem Auger											
Aband	onmost Mothod											
Bori	ngs backfilled with soil cuttings upon completion.											
	WATER LEVEL OBSERVATIONS					Boring Started: 10/4	1/2016	Borir	ng Com	oleted: 10/4/20	016	
	Groundwater not encountered				Π	Drill Rig: D-50		Drille	er: D&S	Drilling		
	4685 S A Te	sh Ave mpe, A	Ste H-4	-		Project No.: 651652	267	Exhi	bit: A	\-68		

	BORING LOG NO. B60 Page 1 of 1											
F	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLIEN	T: U	Inite	ed States Dep	artment	of th	e Inte	erior		
-	SIT	··F·	-	G	iallu	ip, New Mexic	0					
	0.1	Sweetwater, Arizona										
	.0G	LOCATION See Exploration Plan	((/EL	ŕΡΕ	ST ST	л (%)	(%)	۲ در)	ATTERBERG LIMITS	NES	
	HICL	Latitude: 36.87586° Longitude: -109.3744°	TH (m	R LEV	LE T)	D TES	ear FD	ATER ENT (HT (p		NTFI	
	GRAF	Surface Elev.: 1732.7 ((m)	WATE	SAMP	FIEL REG	Nucle DD (pc	CONT	VEIG	LL-PL-PI	ERCE	
		DEPTH ELEVATION (POORLY GRADED SAND WITH SILT (SP-SM), light	<u>(m)</u>	- 0	۵ ۱							
		brown, very dense			\mathbf{X}	21-50/4"						
										NP	7	
			1-	_								
		1.68 17	31.0			50/5"						
		Boring Terminated at 1.68 Meters										
~												
1/19/16												
DT 1												
2015.G												
ACON												
TERR												
GPJ												
65267												
-L 651												
O WEL												
N-90												
IART L												
EO SM												
н. 19												
EPOR												
NAL R												
ORIGII												
ROM												
TEDF		Stratification lines are approximate. In-situ, the transition may be gradual.				Hammer Type: A	Automatic					
EPAR ²		· · · · · · · · · · · · · · · · · · ·										
DIFS	dvan Holl	cement Method: ow Stem Auger				Notes:						
IS NO	band Bori	onment Method: ngs backfilled with soil cuttings upon completion.										
- FOG						Device Oferit 1 (1)	E/2040	D : 1			040	
RING		Groundwater not encountered	ar			Drill Rig: D 50	5/2016	Borir		Drilling	016	
\circ						DUII RIY. D-30			51. DQO	UIIIIIII		

		BORING LOG NO. B61 Page 1 of 1											
ſ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CLI	IEN	r: U	nite	d States Dep	artment	of th	e Inte	erior		
╞	SIT	· · · ·	-		G	allu	p, New Mexic	0					
	011	Sweetwater, Arizona											
	00	LOCATION See Exploration Plan		('EL DNS	ΡE	t.	T (%)	(%	- cf)	ATTERBERG LIMITS	NES	
	HICL	Latitude: 36.87716° Longitude: -109.37288°		TH (m	R LEV	-е тү	D TES	ar FD)/MC	LTER ENT (HT (p			
	GRAP	Surface Elev.: 1736.5 ((m)	DEP.	VATE	AMPL	FIELD	Nucle D (pcf	NN	DRY	LL-PL-PI	ERCEI	
	<u></u>	DEPTH ELEVATION ((m)		> 5	S S			0			E.	
		brown, very dense				Î							
:							50/5"						
				1 _		Τ	00/0				NP	21	
				I									
						Ţ							
		1.83 173 Roring Terminated at 1.92 Maters	34.7			\bowtie	36-50/4"						
		bornig reminated at 1.05 meters											
/16													
11/19													
GDT													
N2015													
RACO													
TERI													
7.GPJ													
16526													
LL 65													
O WE													
N-90.													
IART L													
S O SM													
POR													
AL RE													
RIGIN													
O WO													
ED FR													
ARATI	_	Stratification lines are approximate. In-situ, the transition may be gradual.	_	_	_	_	Hammer Type: A	Automatic	_	_	_	_	
F SEP.	dvan	cement Method:					Notes:						
ALID I	HOII	ow Stell Augel											
10T V	band	onment Method:											
GIS∧	Bori	ngs backfilled with soil cuttings upon completion.											
Q LO		WATER LEVEL OBSERVATIONS					Boring Started: 10/-	4/2016	Borir	ng Com	oleted: 10/4/20	016	
BORI			3				Drill Rig: D-50		Drille	er: D&S	Drilling		
THIS		4685 S Ash Temp			Project No.: 65165	267	Exhil	oit: A	A-70				

	BORING LOG NO. B62 Page 1 of 1											
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	_IEN	T: U	nite	ed States Depa	artment	of th	e Inte	erior		
SIT	E: Sweetwater, Arizona			Ū			.0					
(1)				ر ۱						ATTERBERG	S	
RAPHIC LOC	Latitude: 36.87851° Longitude: -109.37145°	(m)	OEPTH (m)	ATER LEVEL SERVATION	МРLЕ ТҮР	RESULTS	Juclear FDT (pcf)/MC (%	WATER ONTENT (%)	DRY UNIT /EIGHT (pcf)	LIMITS	RCENT FINE	
ڻ 		(m)		З®	SA	<u>н</u>		Õ	5		PEI	
	dense					26-50/4"						
			1-	-						NP	11	
	1.6817	38.7				50/5"						
	Statification lines are approximate. In situ the transition may be gradual					Hammer Tuno: A	utomatic					
Advan Holl Aband Bori	cement Method: ow Stem Auger lonment Method: ings backfilled with soil cuttings upon completion.					Notes:						
	WATER LEVEL OBSERVATIONS					Boring Started: 10/	5/2016	Borin	ng Com	oleted: 10/5/20)16	
	Groundwater not encountered					Drill Rig: D-50		Drill	er: D&S	Drilling		
		Ave Spe, AZ	Ste H-4 Z			Project No.: 651652	267	Exhil	bit: A	y 71		

	BORING LOG NO. B63 Page 1 of 1												
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	С	LIEN	T: U	nite	ed States Depa	artment	of th	e Int	erior			
SIT	E: Sweetwater, Arizona												
				6						ATTERBERG	Ś		
PHIC LOG	Local ION See Exploration Plan Latitude: 36.87981° Longitude: -109.36999°		PTH (m)	ER LEVEL	PLE TYPE	LD TEST SULTS	lear FDT cf)/MC (%)	ATER TENT (%)	¢Υ UNIT GHT (pcf)		ENT FINES		
GRA	Surface Elev.: 1746.0 DEPTH ELEVATION	(m) (m)	DE	WAT	SAMI	FIEI RE	DD (p	CON	MEI		PERC		
	POORLY GRADED SAND WITH SILT (SP-SM), light brown, very dense												
					X	34-50/3"		5	103	NP	9		
			1-										
	1.83 1	744.2				35-50/5"							
	Boring Terminated at 1.83 Meters												
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic						
Advan	cement Method:					Notes:							
Hol	ow Stem Auger												
Aband Bor	onment Method: ngs backfilled with soil cuttings upon completion.												
	WATER LEVEL OBSERVATIONS					Doring Started: 40/	2016	Dari		alatadi 10/5/00	16		
	Groundwater not encountered					Boring Started: 10/5	0/2016	Borin		Drilling	J16		
	4685 S As Ter	h Ave	Ste H-4 Z			Project No.: 651652	267	Exhil	bit: A	-72			

	BORING LOG NO. B64 Page 1 of 1												
PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CI		Г: U G	nite	ed States Depa	artment	of th	e Inte	erior			
SIT	E: Sweetwater, Arizona			Ŭ	unu		•						
(1)				. ഗ						ATTERBERG	S		
BRAPHIC LOC	Latitude: 36.88114° Longitude: -109.36842° Surface Elev.: 1750.0 ((m)	DEPTH (m)	ATER LEVEL	AMPLE TYPE	FIELD TEST RESULTS	Nuclear FDT D (pcf)/MC (%	WATER ONTENT (%)	DRY UNIT VEIGHT (pcf)	LIMITS	ERCENT FINE		
•.•	DEPTH ELEVATION ((m)		≤¤	Ś		ā	0	_		ЪЕ		
	POORLY GRADED SAND WITH SILT (SP-SM), tan, very dense				Î								
			1 –	-	М	17-24-32 N=56				NP	6		
					ł								
	1.68 174 Boring Terminated at 1.68 Meters	48.3				50/4"							
	Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	utomatic						
Advan Holl Aband	cement Method: ow Stem Auger					Notes:							
501													
	WATER LEVEL OBSERVATIONS	_				Boring Started: 10/4	/2016	Borin	ng Com	oleted: 10/4/20	016		
		2				Drill Rig: D-50		Drille	er: D&S	Drilling			
		Ave	Ste H-4 Z		_	Project No.: 651652	67	Exhil	oit: A	A-73			

		BORING LOG NO. B65 Page 1 of 1											
ľ	PR	OJECT: N35(8)1,2,4 and N5045(1)1,2,4	CL	IEN	T: U	nite	d States Depa	artment	of th	e Inte	erior		
	017	·c.			G	allu	ıp, New Mexic	0					
	311	C. Sweetwater, Arizona											
Ī	g	LOCATION See Exploration Plan		_	NS	РЕ	F	т (%)	(%	d	ATTERBERG LIMITS	E S	
	HIC LO	Latitude: 36.88252° Longitude: -109.36693°		(m) H	R LEV	E TY	ULTS	ar FD' /MC (ENT (9	UNIT HT (po			
	GRAP	Surface Elev.: 1754.4	(m)	DEP	VATER	AMPL	FIELD	Nucle D (pcf	AN TINO:	DRY	LL-PL-PI	ERCEI	
-		DEPTH ELEVATION	(m)		28	S S			0	_		ä	
İ		<u>OILTT OARD (OM)</u> , brown, house to medium dense				Î							
-							6.10		6	102		10	
				1 –			0-12		0	103	NP	18	
·													
							3-4-4						
		1.98 17	52.4			\square	N=8						
		Boring Terminated at 1.98 Meters											
19/16													
DT 11/													
015.GI													
CON2(
ERRA													
GPJ T													
5267.0													
. 6516													
WELL													
G-NO													
RT LC													
AMS C													
GEO													
PORT.													
AL RE													
RIGIN													
O MO													
ED FR													
PARAT		Stratification lines are approximate. In-situ, the transition may be gradual.					Hammer Type: A	lutomatic					
IF SEF	Advan Holl	cement Method: ow Stem Auger					Notes:						
/ALID													
NOT /	Aband	onment Method:											
OG IS	DOL								-				
SINGL		Groundwater not encountered					Boring Started: 10/5	5/2016	Borir	ng Com	oleted: 10/5/20	016	
S BOR				Ste H-4			Drill Rig: D-50		Drille	er: D&S	Drilling		
Ĩ		4685 S Ash Temj		Project No.: 651652	267	Exhi	bit: A	\-74					
		BORING LOG NO. B66 Page 1 of 1											
--------	--	---	------------	--------------------	--	--------------	----------------------	---------------------	---------------	--------	---------------------	--------	--
	PROJECT: N35(8)1,2,4 and N5045(1)1,2,4				CLIENT: United States Department of the Interior								
	TIP		-	Gallup, New Mexico									
	011	Sweetwater, Arizona											
	00	LOCATION See Exploration Plan		('EL DNS	ΡE	t.	Т (%)	(%	ر ط	ATTERBERG LIMITS	NES	
	HICL	Latitude: 36.84907° Longitude: -109.4569°		TH (m	R LEV	-е тү	D TES	ar FD f)/MC	ATER ENT (HT (p		NT FII	
	GRAF	Surface Elev.: 1587.4	(m)	DEP	NATE BSER	AMPI	FIELI	Nucle DD (pc	CONT	DRY	LL-PL-PI	ERCE	
		DEPTH ELEVATION SILTY SAND (SM) brown very loose to loose	<u>(m)</u>		>0	S A						□	
							4.0.0						
						Ж	N=5						
				1-	4						NP	22	
						\mathbf{I}	2_3		2	0/			
ŀ		1.83 15 Boring Terminated at 1.83 Meters	585.6		-		2-0		2	54			
19/16													
DT 11/													
15.GE													
CON2C													
ERRA(
PJ TE													
5267.G													
65165													
VELL													
NON-6													
IT LOC													
SMAR													
GEO													
ORT.													
- REP(
GINAL													
M ORI													
0 FRO													
RATEL		Stratification lines are approximate. In-situ, the transition may be gradual.			1		Hammer Type: A	utomatic		I	<u> </u>	I	
SEPA	dvan	cement Method:					Notes:						
LID IF	Holl	ow Stem Auger											
	hand	onment Method:											
) IS N	Bori	ngs backfilled with soil cuttings upon completion.											
G LOG		WATER LEVEL OBSERVATIONS					Boring Started: 10/5	5/2016	Borir	ng Com	pleted: 10/5/20	016	
SORIN	Groundwater not encountered				Drill Rig: D-50 Driller: D&S Drilling					-			
THISE	4685 S Ash / Temp/						Project No.: 651652	65267 Exhibit: A-75					

JRH

DRC

Date

Approved By:

65165267.DWG

11/19/2016

4685 South Ash Avenue, Suite H-4

PH. (480) 897-8200

Tempe, AZ 85282

FAX. (480) 897-1133

SWEETWATER, ARIZONA

A-S4

Geotechnical and Pavement Design Report N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

APPENDIX B LABORATORY TESTING

Resourceful
Responsive
Reliable

Laboratory Testing

Samples retrieved during the field exploration were taken to the laboratory for further observation by the project geotechnical engineer and were classified in accordance with the Unified Soil Classification System (USCS) described in Appendix A. At that time, the field descriptions were confirmed or modified as necessary and an applicable laboratory testing program was formulated to determine engineering properties of the subsurface materials.

Laboratory tests were conducted on selected soil and asphalt core samples and the test results are presented in this appendix and/or the report. The laboratory test results were used for the geotechnical and pavement engineering analyses, and the development of the pavement recommendations. Laboratory tests were performed in general accordance with the applicable ASTM, local or other accepted standards.

Selected soil samples obtained from the site were tested for the following engineering properties:

n

n

n

n

n

n	Atterberg Limits	
n	Moisture Content	
n	Expansion	
n	рН	
n	Chlorides	
	Malatura Davaitu	

- n Moisture-Density Relationship
- Sieve Analysis Dry Density R-Value Soluble Sulfates R-Value

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM OI

SEPARATED

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL

NON-

NON-

ш

ORIGINAL NON-SEPARATED ш NOT VAL ABORATORY TESTS ARE

NON-

ш

GRAIN SIZE: USCS-2 65165267.GPJ TERRACON2015.GDT 11/18/16 REPORT. ORIGINAL NON-SEPARATED ш NOT VAL ABORATORY TESTS ARE

GRAIN SIZE: USCS-2 65165267.GPJ TERRACON2015.GDT 11/18/16 REPORT. ORIGINAL NON-SEPARATED ш ē NOT VAL ABORATORY TESTS ARE

EROM

ш

GRAIN SIZE: USCS-2 65165267.GPJ TERRACON2015.GDT 11/18/16 REPORT. ORIGINAL NON-SEPARATED ш ē NOT VAL ABORATORY TESTS ARE

EROM

ш

ASTM D422 / ASTM C136

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. COMPACTION - V2 65165267.6PJ TERRACON2012.6DT 11/18/16

MOISTURE-DENSITY RELATIONSHIP

ASTM D698/D1557

ASTM D698/D1557

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. COMPACTION - V2 65165267.6PJ TERRACON2012.6DT 11/18/16

In-Situ Properties Classification Corrosivity Expansion Testing USCS Depth **Borehole** Soil Remarks Passing Atterberg Limits Dry Water Expansion No. (ft.) Drv Densitv Water Surcharge Expansion Resistivity Sulfates Chlorides Class. #200 pН Density Content İndex Content (%) (pcf) (psf) . (%) (ohm-cm) (ppm) (ppm) LL PL ΡI (pcf) EI 50 (%) Sieve (%) SP-SM NP NP **B1** 0.0 - 5.0 11 NP 106 11.8 100 -1.0 9.9 1436 303 150 SP-SM 0.8 1.2 B1 2.0 - 3.0 101 10 101 10.4 100 B2 0.0 - 5.0 54 22 CL 34 12 B2 4.0 - 5.0 CL 14 114 13.7 500 0.5 1.2 114 1/19/16 B3 0.0 - 5.0SM 38 NP NP NP 1.0 - 2.0 B3 SM 101 3 101 3.1 100 0.7 1.2 GDT B4 0.0 - 5.0SM 19 NP NP NP 110 8.0 100 0.0 **TERRACON2012** B4 5.0 - 6.0SM 96 6 1.2 0.0 - 5.0NP NP B5 SM 23 NP 8.4 1746 330 38 2.0 - 3.0SM 4 99 4.4 B5 99 100 0.3 1, 2 5.0 - 6.5SM NP NP B5 16 NP GPJ B6 0.0 - 5.0 SP-SM 10 NP NP NP 65165267 SP-SM 2 B6 5.0 - 6.0 94 94 1.9 500 0.6 1.2 B7 0.0 - 5.0 SP-SM NP NP NP 11 N PROPERTIES B7 2.0 - 3.0 SP-SM 9 98 8.5 100 0.6 1, 2 98 0.0 - 5.0NP NP 8.9 **B8** SM 15 NP 107 100 0.0 **B8** 5.0 - 6.0 SM 115 1 1.2 SOIL B9 0.0 - 5.0 SP-SM 8 NP NP NP 8.6 1077 2420 37 B9 1.0 - 2.0 SP-SM 105 5 105 5.4 100 0.6 1.2 ORT. RFP(SP-SM NP NP B9 9.0 - 10.5 12 NP B10 0.0 - 5.0 SM 34 NP NP NP ORIGINAL B10 5.0 - 6.0SM 91 2 91 1.7 500 0.8 1, 2 B11 0.0 - 5.0 SM 15 NP NP NP SEPARATED FROM B11 1.0 - 2.0 SM 89 3 89 3.3 100 1.3 1.2 B12 0.0 - 5.0 SM 14 NP NP NP REMARKS 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample. 2. Visual Classification. NOT VALID Submerged to approximate saturation. 3. 4. Expansion Index in accordance with ASTM D4829-95. 5. Air-Dried Sample **BORING LOG IS** PROJECT: N35(8)1,2,4 and N5045(1)1,2,4 PROJECT NUMBER: 65165267 SITE: CLIENT: United States Department of the Interior 4685 S Ash Ave Ste H-4 Sweetwater, Arizona Gallup, New Mexico Tempe, AZ THIS PH. 480-897-8200 FAX. 480-897-1133 EXHIBIT: B-43

Dereholo	Donth	USCS	In-Situ P	roperties	Cla	assific	ation			Ex	pansion	Testing	I		Со	rrosivity		
No.	(ft.)	Soil	Dry Density	Water	Passing	Atter	berg L	imits	Dry	Water	Surcharge	Expansion	Expansion		Resistivity	Sulfates	Chlorides	Remarks
	()	Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	Density (pcf)	Content (%)	(psf)	(%)	Index EI 50	рН	(ohm-cm)	(ppm)	(ppm)	
B13	0.0 - 5.0	SM			17	NP	NP	NP	105	9.8	10	0.0		9.1	6693	61	47	
B13	2.0 - 3.0	SM	103	4					103	3.6	100	-0.3						1, 2
B14	0.0 - 5.0	SM			16	NP	NP	NP										
B14	5.0 - 6.0	SM	98	5														1, 2
B15	0.0 - 5.0	SP-SM			9	NP	NP	NP	98	9.7	100	0.0						
B15	-					NP	NP	NP										
B16	0.0 - 5.0	SM			33	NP	NP	NP	107	8.9	100	0.3		9.0	6169	52	45	
B16	5.0 - 6.0	SM	109	14					109	14.2	500	-0.5						1, 2
B17	5.0 - 10.0	SM			13	NP	NP	NP	103	10.8	100	0.2						
B18	0.0 - 5.0	SM			15	NP	NP	NP										
B19	0.0 - 5.0	SM			22	NP	NP	NP										
B20	0.0 - 5.0	SM			15	NP	NP	NP						9.0	7372	33	25	
B20	5.0 - 6.5	SM	100	4														1, 2
B21	0.0 - 4.0	SM			33	NP	NP	NP										
B21	4.0 - 10.0	SM			22	NP	NP	NP	14	9.7	100	0.1						
B22	0.0 - 5.0	SM			19	NP	NP	NP										
B23	0.0 - 5.0	SM			23	NP	NP	NP										
B24	1.0 - 6.0	SM			17	NP	NP	NP	111	8.4	100	0.0						
B25	0.0 - 5.0	SM			39	NP	NP	NP	106	10.4	100	0.0		9.6	3201	85	50	
B25	2.0 - 3.0	SM	96	9					96	8.8	100	-2.9						1, 2
B26	0.0 - 5.0	SM			16	NP	NP	NP						9.3	6305	47	38	
B26	5.0 - 6.0	SM	101	6					101	6.0	500	-0.3						1, 2
B27	0.0 - 5.0	CL-ML			63	24	17	7						9.5	3007	83	55	
B27	2.0 - 3.0	CL-ML	108	17					108	16.7	100	-0.4						1, 2
B28	0.0 - 5.0	SP			3	NP	NP	NP										
REMARKS	oity and/or mai	atura datarm	inad from a	no or moro	ringo of a mu	ulti rina	oomolo											
2. Visual C	Classification.				nings of a find	uu-nng	sample											
 Submerged to approximate saturation. Expansion Index in accordance with ASTM D4820-95 																		
 Expansion index in accordance with AS IN D4629-95. Air-Dried Sample 																		
PROJECT: N35(8)1,2,4 and N5045(1)1,2,4											1	PROJECT	NUMB	ER: 65165	267			
SITE: Swee	SITE: Sweetwater, Arizona				4685 S Ash Ave Ste H-4						(CLIENT: United States Department of the Interior Gallup, New Mexico						
					Tempe, AZ PH. 480-897-8200 FAX. 480-897-1133							EXHIBIT: B-44						

Poroholo	Dopth	USCS	In-Situ P	roperties	Cli	assific	ation			E>	pansion	ı Testinç	J		Cc	prrosivity		
No.	(ft.)	Soil	Drv Density	Water	Passing	Atter	berg l	∟imits	Dry	Water	Surcharge	Expansior	Expansion		Resistivity	Sulfates	Chlorides	Remarks
		Class.	(pcf)	Content (%)	#200 Siev <u>e (%)</u>	LL	PL	PI	(pcf)	(%)	(psf)	(%)	El 50	рн	(ohm-cm)	(ppm)	(ppm)	
B28	5.0 - 5.4	SP	98	2														1, 2
B29	0.0 - 5.0	SM			16	NP	NP	NP										
B29	2.0 - 3.0	SM	101	5	<u> </u>				101	5.1	100	-1.3						1, 2
B30	0.0 - 5.0	SM			12	NP	NP	NP	102	11.2	100	-0.4						<u> </u>
B30	5.0 - 5.4	SM	98	4	<u> </u>													1, 2
B31	0.0 - 5.0	SM			18	NP	NP	NP										
B31	2.0 - 3.0	SM	104	8	· · · · · · · · · · · · · · · · · · ·				104	8.1	100	-0.5						1, 2
B32	0.0 - 5.0	SM			16	NP	NP	NP						8.4		69	38	· · · · · · · · · · · · · · · · · · ·
B33	0.0 - 5.0	SM			14	NP	NP	NP										
B33	2.0 - 2.8	SM	98	8	<u> </u> '												<u> </u>	1, 2
B34	0.0 - 3.0	SM			17	NP	NP	NP										
B35	0.0 - 5.0	SP-SM			12	NP	NP	NP	111	9.3	100	-0.5						
B35	2.0 - 2.9	SP-SM	109	3	·				109	3.1	100	-0.6						1, 2
B36	0.0 - 5.0	SP-SM			6	NP	NP	NP								77	25	
B36	5.0 - 5.3			3	· ·												,	2
B37	0.0 - 5.0	SM			19	NP	NP	NP	110	8.2	100	0.5					,	
B37	2.0 - 3.0	SM	109	6	ļ!				109	6.2	100	0.4					,	1, 2
B38	0.0 - 5.0	SP-SM			7	NP	NP	NP										
B39	0.0 - 5.0	SM			18	NP	NP	NP										
B39	2.0 - 3.0	SM	91	15	· · · · ·				91	15.1	100	-1.4						1, 2
≩ B40	0.0 - 5.0	SM			14	NP	NP	NP								28	50	
5 B40	5.0 - 5.9		104	9	· · ·													1, 2
B41	0.0 - 5.0	SP-SM			6	NP	NP	NP	112	9.4	100	-1.3					,	
B42	0.0 - 5.0	SM			19	NP	NP	NP										
B42	5.0 - 5.5	SM	102	5	ļ												,	1, 2
REMARKS	asity and/or mo		niped from c		rings of a m			<u> </u>			1	1						
2. Visual C	Classification.	slure uelenn			Thys or a mu	Ju-my	Sample	<i>i.</i>										
3. Submer 4. Expansi	ged to approxin ion Index in acc	nate saturati	on. h ASTM D4	829-95.														
5. Air-Dried	d Sample																	
PROJECT:	N35(8)1,2,4 ar	nd N5045(1)1,2,4			-	16					F	PROJECT	NUMB	ER: 65165	267		
SITE: Swe	etwater, Arizor	na			1		4	685 S Asl	h Ave Ste H-	4		(CLIENT: L	Jnited S Gallup,	States Depa New Mexic	artment of f	the Interior	
ב 2 1						PH. 48()-897-820	.0	FAX. 48	30-897-1133			EXHIBIT:	B-45				

In-Situ Properties Classification Corrosivity Expansion Testing USCS Depth **Borehole** Soil Remarks Passing Atterberg Limits Dry Water Expansion No. (ft.) Drv Densitv Water Surcharge Expansion Resistivity Sulfates Chlorides Class. #200 pН Density Content İndex Content (%) (pcf) (psf) (%) (ohm-cm) (ppm) (ppm) LL PL ΡI (pcf) EI 50 (%) Sieve (%) NP NP B43 0.0 - 5.0 SM 19 NP 41 40 2.0 - 2.8 6 1.2 B43 SM 111 B44 0.0 - 5.0 SM NP NP NP -1.2 14 106 11.5 100 B45 0.0 - 5.0 SP-SM 11 NP NP NP 1/19/16 B45 2.0 - 2.9SM 111 6 1.2 0.0 - 5.0NP NP B46 SM 14 NP 41 40 LDF LDF B46 5.0 - 5.8 102 3 1, 2 B47 0.0 - 5.0 SM 24 NP NP NP 107 9.4 100 -0.1 **TERRACON201** 17 NP NP NP B48 0.0 - 4.0SM 4.0 - 9.0 SM 32 NP NP NP 9.2 B48 108 100 0.1 0.0 - 5.0 NP NP B49 ML 50 NP Ъ B49 8.0 - 10.0 SM 30 NP NP NP 65165267 B50 0.0 - 5.0 SM 24 NP NP NP 106 9.8 100 0.3 77 25 B50 5.0 - 6.0 SM 8 104 7.7 500 2.6 1.2 104 N PROPERTIES 0.0 - 5.0SP NP NP B51 4 NP 2.0 - 2.8SP 1, 2 B51 113 4 B52 0.0 - 5.0 SP-SM 6 NP NP NP 57 50 SOIL B52 5.0 - 5.8 SP-SM 102 2 1.2 NP B53 0.0 - 5.0 SP 4 NP NP **DRT** 2.0 - 2.9SP RFP(B53 102 4 1, 2 B54 0.0 - 5.0 SM 17 NP NP NP ORIGINAL SM B54 5.0 - 5.7100 3 1, 2 B55 0.0 - 5.0 SP-SM 7 NP NP NP 105 10.0 0.9 28 48 100 SEPARATED FROM 6 B56 0.0 - 5.0 SP-SM NP NP NP B57 0.0 - 5.0 SP-SM 12 NP NP NP REMARKS 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample. 2. Visual Classification. NOT VALID Submerged to approximate saturation. 3. 4. Expansion Index in accordance with ASTM D4829-95. 5. Air-Dried Sample **30RING LOG IS** PROJECT: N35(8)1,2,4 and N5045(1)1,2,4 PROJECT NUMBER: 65165267 SITE: CLIENT: United States Department of the Interior 4685 S Ash Ave Ste H-4 Sweetwater, Arizona Gallup, New Mexico Tempe, AZ UIL. PH. 480-897-8200 FAX. 480-897-1133 EXHIBIT: B-46

	Doroholo	Dooth	USCS	In-Situ P	roperties	Cla	assific	ation			Ex	pansion	Testing			Co	rrosivity		
	No.	(ft.)	Soil	Drv Densitv	Water	Passing	Atter	berg L	imits	Dry	Water	Surcharge	Expansion	Expansion		Resistivity	Sulfates	Chlorides	Remarks
		(***)	Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	Density (pcf)	(%)	(psf)	(%)	Index EI 50	рН	(ohm-cm)	(ppm)	(ppm)	
	B57	2.0 - 3.0	SP-SM	108	3	, <i>,</i> , ,				108	2.9	100	-0.3						1, 2
	B58	0.0 - 5.0	SP			4	NP	NP	NP	104	11.1	100	0.4				41	27	
	B59	0.0 - 5.0	SP-SM			11	NP	NP	NP										
	B59	2.0 - 2.9	SP-SM	120	4														1, 2
19/16	B60	0.0 - 5.0	SP-SM			7	NP	NP	NP								41	45	
L 11/	B61	0.0 - 5.0	SM			21	NP	NP	NP										
2.GD1	B62	0.0 - 5.0	SP-SM			11	NP	NP	NP										
N2012	B63	0.0 - 5.0	SP-SM			9	NP	NP	NP	110	9.6	100	0.0				77	75	
ACO	B63	2.0 - 2.8	SP-SM	103	5														1, 2
ERR.	B64	0.0 - 5.0	SP-SM			6	NP	NP	NP										
PJ T	B65	0.0 - 5.0	SM			18	NP	NP	NP								28	55	
267.G	B65	2.0 - 3.0	SM	103	6					103	6.3	100	0.2						1, 2
51652	B66	0.0 - 5.0	SM			22	NP	NP	NP	106	7.6	100	-0.5				41	208	
\$ 2 6	B66	5.0 - 6.0	SM	94	2					94	2.0	500	-0.5						1, 2
RTIES	RL21+500	0.5 - 1.5	SM												8.5	3783	57	45	2
OPEF	RL23+870	0.5 - 1.5	SM												8.8	6111	66	38	2
L PR	RL24+370	0.5 - 1.5	SM												8.6	5820	58	50	2
SOI	RL24+735	0.5 - 1.5	SM												8.6	7566	33	25	2
RT.	RL26+010	0.0 - 0.5	SM												8.2	5529	69	38	2
REPC	RL26+010	-	SM												8.2	4850	63	37	2
NAL	RL26+240	0.5 - 1.5	SM												9.1	5675	55	38	2
DRIG	RL30+320	0.5 - 1.5	SM												8.3	7178	55	25	2
O WO																			
D FR																			
RATE																			
EPAF	REMARKS	ity and/or mai	atura datarm	inad from a	no or moro	ringo of o mu	ulti rina	oomolo											
0 F S	2. Visual Cl	assification.				nings of a mu	ini-ring	sample	•										
VALIE	 Submerg Expansio 	ed to approxin n Index in acc	nate saturati ordance with	on. 1 ASTM D48	329-95.														
VOT	5. Air-Dried	Sample																	
OG IS I	PROJECT: N	N35(8)1,2,4 a	nd N5045(1)1,2,4									F	ROJECT	NUMB	ER: 65165	267		
30RING I	SITE: Swee	twater, Arizor	na					4	685 S Ash Tem	Ave Ste H-4 pe, AZ			0	CLIENT: U	Inited S Sallup, I	States Depa New Mexico	rtment of t	he Interior	
THIS E							PH. 480	-897-820	D	FAX. 48	0-897-1133		E	XHIBIT: I	3-47				

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Sandy Lean ClaySAMPLE SOURCE:B-2 @ 0'-5'

Jlerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/02/16

SPECIMEN I. D.	Α	В	С
Moisture Content	23.1%	20.5%	17.9%
Compaction Pressure (psi)	*	75	150
Specimen Height (inches)	2.61	2.50	2.44
Dry Density (pcf)	102.8	107.3	112.3
Horiz. Pres. @ 1000lbs (psi)	65.0	60.0	53.0
Horiz. Pres. @ 2000lbs (psi)	140.0	140.0	128.0
Displacement	4.55	3.90	3.54
Expansion Pressure (psi)	0.4	0.7	2.2
Exudation Pressure (psi)	220	287	515
R Value	8	8	14
* HAND TAMPED			

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-3 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/02/16

SPECIMEN I. D.	Α	В	С
Moisture Content	14.0%	12.3%	10.6%
Compaction Pressure (psi)	*	100	350
Specimen Height (inches)	2.52	2.48	2.40
Dry Density (pcf)	117.9	121.6	124.6
Horiz. Pres. @ 1000lbs (psi)	57.0	44.0	18.0
Horiz. Pres. @ 2000lbs (psi)	123.0	87.0	33.0
Displacement	5.08	4.81	3.94
Expansion Pressure (psi)	0.0	0.0	0.0
Exudation Pressure (psi)	224	313	665
R Value	13	30	69
* HAND TAMPED			

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-8 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/04/16

SPECIMEN I. D. A B C Moisture Content 12.4% 11.5% 10.7% Compaction Pressure (psi) 350 350 350 Specimen Height (inches) 2.55 2.50 2.50 Dry Density (pcf) 115.0 116.9 117.7 Horiz. Pres. @ 1000lbs (psi) 22.0 19.0 15.0 Horiz. Pres. @ 2000lbs (psi) 39.0 35.0 26.0 Displacement 4.25 4.11 3.88 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 136 277 796 R Value 65 68 77				
Moisture Content12.4%11.5%10.7%Compaction Pressure (psi)350350350Specimen Height (inches)2.552.502.50Dry Density (pcf)115.0116.9117.7Horiz. Pres. @ 1000lbs (psi)22.019.015.0Horiz. Pres. @ 2000lbs (psi)39.035.026.0Displacement4.254.113.88Expansion Pressure (psi)0.00.00.0Exudation Pressure (psi)136277796R Value656877	SPECIMEN I. D.	Α	В	С
Compaction Pressure (psi)350350350Specimen Height (inches)2.552.502.50Dry Density (pcf)115.0116.9117.7Horiz. Pres. @ 1000lbs (psi)22.019.015.0Horiz. Pres. @ 2000lbs (psi)39.035.026.0Displacement4.254.113.88Expansion Pressure (psi)0.00.00.0Exudation Pressure (psi)136277796R Value656877	Moisture Content	12.4%	11.5%	10.7%
Specimen Height (inches) 2.55 2.50 2.50 Dry Density (pcf) 115.0 116.9 117.7 Horiz. Pres. @ 1000lbs (psi) 22.0 19.0 15.0 Horiz. Pres. @ 2000lbs (psi) 39.0 35.0 26.0 Displacement 4.25 4.11 3.88 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 136 277 796 R Value 65 68 77	Compaction Pressure (psi)	350	350	350
Dry Density (pcf) 115.0 116.9 117.7 Horiz. Pres. @ 1000lbs (psi) 22.0 19.0 15.0 Horiz. Pres. @ 2000lbs (psi) 39.0 35.0 26.0 Displacement 4.25 4.11 3.88 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 136 277 796 R Value 65 68 77	Specimen Height (inches)	2.55	2.50	2.50
Horiz. Pres. @ 1000lbs (psi)22.019.015.0Horiz. Pres. @ 2000lbs (psi)39.035.026.0Displacement4.254.113.88Expansion Pressure (psi)0.00.00.0Exudation Pressure (psi)136277796R Value656877	Dry Density (pcf)	115.0	116.9	117.7
Horiz. Pres. @ 2000lbs (psi) 39.0 35.0 26.0 Displacement 4.25 4.11 3.88 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 136 277 796 R Value 65 68 77	Horiz. Pres. @ 1000lbs (psi)	22.0	19.0	15.0
Displacement 4.25 4.11 3.88 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 136 277 796 R Value 65 68 77	Horiz. Pres. @ 2000lbs (psi)	39.0	35.0	26.0
Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 136 277 796 R Value 65 68 77	Displacement	4.25	4.11	3.88
Exudation Pressure (psi) 136 277 796 R Value 65 68 77	Expansion Pressure (psi)	0.0	0.0	0.0
R Value 65 68 77	Exudation Pressure (psi)	136	277	796
	R Value	65	68	77

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-10 @ 0'-5'

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/04/16

SPECIMEN I. D.	Α	В	С
Moioturo Contont	1 / /0/	12 69/	10.00/
	14.4%	13.0%	12.0%
Compaction Pressure (psi)	150	250	350
Specimen Height (inches)	2.55	2.58	2.62
Dry Density (pcf)	107.7	110.1	112.1
Horiz. Pres. @ 1000lbs (psi)	28.0	25.0	21.0
Horiz. Pres. @ 2000lbs (psi)	54.0	48.0	39.0
Displacement	4.87	4.76	4.53
Expansion Pressure (psi)	0.0	0.0	0.0
Exudation Pressure (psi)	254	311	454
R Value	50	57	66

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-16 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/04/16

SPECIMEN I. D.	Α	В	С
Moisture Content	12.6%	11.8%	11.0%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.50	2.46	2.49
Dry Density (pcf)	117.4	119.1	119.9
Horiz. Pres. @ 1000lbs (psi)	27.0	23.0	15.0
Horiz. Pres. @ 2000lbs (psi)	48.0	38.0	26.0
Displacement	4.72	5.29	3.85
Expansion Pressure (psi)	0.0	0.0	0.0
Exudation Pressure (psi)	102	235	454
R Value	55	60	77

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-19 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/11/16

SPECIMEN I. D.	Α	В	С
Moisture Content	12.4%	12.0%	11.6%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.48	2.46	2.51
Dry Density (pcf)	114.5	115.7	114.9
Horiz. Pres. @ 1000lbs (psi)	22.0	19.0	19.0
Horiz. Pres. @ 2000lbs (psi)	39.0	34.0	33.0
Displacement	3.85	3.81	4.00
Expansion Pressure (psi)	0.0	0.3	0.7
Exudation Pressure (psi)	170	512	796
R Value	67	71	71

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Silty SandSAMPLE SOURCE:B-21 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/11/16

SPECIMEN I. D.	A	В	С
Moisture Content	13.4%	12.6%	11.7%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.52	2.51	2.60
Dry Density (pcf)	113.8	115.3	115.9
Horiz. Pres. @ 1000lbs (psi)	29.0	23.0	18.0
Horiz. Pres. @ 2000lbs (psi)	51.0	41.0	31.0
Displacement	4.62	3.89	3.82
Expansion Pressure (psi)	0.0	0.1	0.8
Exudation Pressure (psi)	105	315	422
R Value	54	65	75

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-25 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/04/16

SPECIMEN I. D.	Α	В	С
Moisture Content	13.3%	12.4%	11.6%
Compaction Pressure (psi)	325	350	350
Specimen Height (inches)	2.51	2.59	2.59
Dry Density (pcf)	113.9	115.3	117.0
Horiz. Pres. @ 1000lbs (psi)	30.0	23.0	20.0
Horiz. Pres. @ 2000lbs (psi)	52.0	43.0	34.0
Displacement	4.98	4.61	4.00
Expansion Pressure (psi)	0.0	0.0	0.0
Exudation Pressure (psi)	168	252	391
R Value	51	62	72

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Sandy Silty ClaySAMPLE SOURCE:B-27 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/04/16

SPECIMEN I. D.	Α	В	с
Moisture Content	11.2%	10.4%	9.5%
Compaction Pressure (psi)	150	350	350
Specimen Height (inches)	2.42	2.47	2.54
Dry Density (pcf)	126.1	127.2	126.7
Horiz. Pres. @ 1000lbs (psi)	39.0	25.0	19.0
Horiz. Pres. @ 2000lbs (psi)	81.0	50.0	35.0
Displacement	4.09	4.06	3.98
Expansion Pressure (psi)	0.0	0.0	2.8
Exudation Pressure (psi)	140	279	796
R Value	35	58	69

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Silty SandSAMPLE SOURCE:B-31 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/04/16

SPECIMEN I. D.	Α	В	С
Moisture Content	11.9%	11.1%	10.2%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.51	2.51	2.51
Dry Density (pcf)	117.4	118.6	119.0
Horiz. Pres. @ 1000lbs (psi)	25.0	17.0	12.0
Horiz. Pres. @ 2000lbs (psi)	44.0	30.0	21.0
Displacement	4.50	4.10	3.98
Expansion Pressure (psi)	0.0	0.0	0.8
Exudation Pressure (psi)	221	397	796
R Value	59	73	81

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Silty SandSAMPLE SOURCE:B-34 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/04/16

SPECIMEN I. D.	Α	В	С
Moisture Content	13.1%	12.2%	11.4%
Compaction Pressure (psi)	175	300	350
Specimen Height (inches)	2.49	2.46	2.52
Dry Density (pcf)	118.6	120.5	121.2
Horiz. Pres. @ 1000lbs (psi)	38.0	29.0	17.0
Horiz. Pres. @ 2000lbs (psi)	76.0	57.0	31.0
Displacement	4.88	4.75	4.30
Expansion Pressure (psi)	0.0	0.1	1.7
Exudation Pressure (psi)	228	278	414
R Value	36	49	71

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-39 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D.	Α	В	С
Moisture Content	13.9%	13.0%	12.2%
Compaction Pressure (psi)	250	350	250
Specimen Height (inches)	2.48	2.48	2.54
Dry Density (pcf)	119.4	120.5	120.0
Horiz. Pres. @ 1000lbs (psi)	31.0	22.0	16.0
Horiz. Pres. @ 2000lbs (psi)	65.0	41.0	30.0
Displacement	4.58	4.49	4.31
Expansion Pressure (psi)	0.0	1.0	4.5
Exudation Pressure (psi)	0	363	788
R Value	44	62	72

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Silty SandSAMPLE SOURCE:B-44 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D.	Α	В	С
Moisture Content	13.8%	12.9%	12.1%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.53	2.51	2.53
Dry Density (pcf)	115.0	115.9	116.7
Horiz. Pres. @ 1000lbs (psi)	24.0	17.0	14.0
Horiz. Pres. @ 2000lbs (psi)	40.0	29.0	23.0
Displacement	4.56	4.18	4.01
Expansion Pressure (psi)	0.0	0.0	0.9
Exudation Pressure (psi)	164	288	796
R Value	62	73	79

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Silty SandSAMPLE SOURCE:B-47 @ 0'-5'

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/11/16

SPECIMEN I. D.	Α	В	С
Moisture Content	12.6%	11.8%	11.3%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.53	2.50	2.50
Dry Density (pcf)	115.8	117.5	117.7
Horiz. Pres. @ 1000lbs (psi)	24.0	16.0	14.0
Horiz. Pres. @ 2000lbs (psi)	43.0	28.0	25.0
Displacement	4.39	4.05	3.82
Expansion Pressure (psi)	0.0	0.0	0.8
Exudation Pressure (psi)	253	319	796
R Value	61	74	78

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-50 @ 0'-5'

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D. A B C Moisture Content 13.0% 12.1% 11.7% Compaction Pressure (psi) 350 350 350 Specimen Height (inches) 2.55 2.48 2.51 Dry Density (pcf) 114.7 116.6 116.7 Horiz. Pres. @ 1000lbs (psi) 22.0 17.0 14.0 Horiz. Pres. @ 2000lbs (psi) 39.0 30.0 24.0
Moisture Content13.0%12.1%11.7%Compaction Pressure (psi)350350350Specimen Height (inches)2.552.482.51Dry Density (pcf)114.7116.6116.7Horiz. Pres. @ 1000lbs (psi)22.017.014.0Horiz. Pres. @ 2000lbs (psi)39.030.024.0
Compaction Pressure (psi) 350 350 350 Specimen Height (inches) 2.55 2.48 2.51 Dry Density (pcf) 114.7 116.6 116.7 Horiz. Pres. @ 1000lbs (psi) 22.0 17.0 14.0 Horiz. Pres. @ 2000lbs (psi) 39.0 30.0 24.0
Specimen Height (inches) 2.55 2.48 2.51 Dry Density (pcf) 114.7 116.6 116.7 Horiz. Pres. @ 1000lbs (psi) 22.0 17.0 14.0 Horiz. Pres. @ 2000lbs (psi) 39.0 30.0 24.0
Dry Density (pcf) 114.7 116.6 116.7 Horiz. Pres. @ 1000lbs (psi) 22.0 17.0 14.0 Horiz. Pres. @ 2000lbs (psi) 39.0 30.0 24.0
Horiz. Pres. @ 1000lbs (psi) 22.0 17.0 14.0 Horiz. Pres. @ 2000lbs (psi) 39.0 30.0 24.0
Horiz. Pres. @ 2000lbs (psi) 39.0 30.0 24.0
D' 1 / 0 005 000
Displacement 4.18 3.95 3.86
Expansion Pressure (psi) 0.0 0.0 0.7
Exudation Pressure (psi) 159 394 761
R Value 65 73 79

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Silty SandSAMPLE SOURCE:B-54 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D.	А	В	С
Moisture Content	13.0%	12.2%	11.3%
Compaction Pressure (psi)	125	350	350
Specimen Height (inches)	2.46	2.41	2.49
Dry Density (pcf)	121.0	122.3	122.5
Horiz. Pres. @ 1000lbs (psi)	45.0	27.0	18.0
Horiz. Pres. @ 2000lbs (psi)	85.0	51.0	30.0
Displacement	5.05	4.00	3.90
Expansion Pressure (psi)	0.0	0.0	0.9
Exudation Pressure (psi)	166	206	479
R Value	30	55	74

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Poorly Graded Sand

 SAMPLE SOURCE:
 B-57 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D.	Α	В	С
Moisture Content	12.8%	11.9%	11.5%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.52	2.58	2.58
Dry Density (pcf)	117.4	117.3	116.8
Horiz. Pres. @ 1000lbs (psi)	16.0	15.0	14.0
Horiz. Pres. @ 2000lbs (psi)	27.0	26.0	24.0
Displacement	4.29	4.19	4.14
Expansion Pressure (psi)	0.0	0.0	0.5
Exudation Pressure (psi)	108	322	761
R Value	74	77	79

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Poorly Graded Sand

 SAMPLE SOURCE:
 B-61 @ 0'-5'

lerracon

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D.	Α	В	С
Moisture Content	14.1%	13.3%	12.4%
Compaction Pressure (psi)	150	300	350
Specimen Height (inches)	2.48	2.47	2.39
Dry Density (pcf)	117.3	119.0	119.8
Horiz. Pres. @ 1000lbs (psi)	41.0	34.0	16.0
Horiz. Pres. @ 2000lbs (psi)	83.0	69.0	28.0
Displacement	4.81	4.72	4.29
Expansion Pressure (psi)	0.0	0.0	2.6
Exudation Pressure (psi)	261	295	504
R Value	33	41	71

PROJECT:BIA N35LOCATION:Sweetwater, AZMATERIAL:Silty SandSAMPLE SOURCE:B-65 @ 0'-5'

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D. A B C Moisture Content 13.0% 12.1% 11.3% Compaction Pressure (psi) 75 100 150 Specimen Height (inches) 2.52 2.49 2.42 Dry Density (pcf) 120.8 122.9 124.9 Horiz. Pres. @ 1000lbs (psi) 53.0 46.0 36.0 Horiz. Pres. @ 2000lbs (psi) 127.0 103.0 79.0 Displacement 4.62 4.26 4.03 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 241 289 361 R Value 12 25 37				
Moisture Content13.0%12.1%11.3%Compaction Pressure (psi)75100150Specimen Height (inches)2.522.492.42Dry Density (pcf)120.8122.9124.9Horiz. Pres. @ 1000lbs (psi)53.046.036.0Horiz. Pres. @ 2000lbs (psi)127.0103.079.0Displacement4.624.264.03Expansion Pressure (psi)0.00.00.0Exudation Pressure (psi)241289361R Value122537	SPECIMEN I. D.	Α	В	С
Compaction Pressure (psi) 75 100 150 Specimen Height (inches) 2.52 2.49 2.42 Dry Density (pcf) 120.8 122.9 124.9 Horiz. Pres. @ 1000lbs (psi) 53.0 46.0 36.0 Horiz. Pres. @ 2000lbs (psi) 127.0 103.0 79.0 Displacement 4.62 4.26 4.03 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 241 289 361 R Value 12 25 37	Moisture Content	13.0%	12.1%	11.3%
Specimen Height (inches) 2.52 2.49 2.42 Dry Density (pcf) 120.8 122.9 124.9 Horiz. Pres. @ 1000lbs (psi) 53.0 46.0 36.0 Horiz. Pres. @ 2000lbs (psi) 127.0 103.0 79.0 Displacement 4.62 4.26 4.03 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 241 289 361 R Value 12 25 37	Compaction Pressure (psi)	75	100	150
Dry Density (pcf) 120.8 122.9 124.9 Horiz. Pres. @ 1000lbs (psi) 53.0 46.0 36.0 Horiz. Pres. @ 2000lbs (psi) 127.0 103.0 79.0 Displacement 4.62 4.26 4.03 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 241 289 361 R Value 12 25 37	Specimen Height (inches)	2.52	2.49	2.42
Horiz. Pres. @ 1000lbs (psi)53.046.036.0Horiz. Pres. @ 2000lbs (psi)127.0103.079.0Displacement4.624.264.03Expansion Pressure (psi)0.00.00.0Exudation Pressure (psi)241289361R Value122537	Dry Density (pcf)	120.8	122.9	124.9
Horiz. Pres. @ 2000lbs (psi)127.0103.079.0Displacement4.624.264.03Expansion Pressure (psi)0.00.00.0Exudation Pressure (psi)241289361R Value122537	Horiz. Pres. @ 1000lbs (psi)	53.0	46.0	36.0
Displacement 4.62 4.26 4.03 Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 241 289 361 R Value 12 25 37	Horiz. Pres. @ 2000lbs (psi)	127.0	103.0	79.0
Expansion Pressure (psi) 0.0 0.0 0.0 Exudation Pressure (psi) 241 289 361 R Value 12 25 37	Displacement	4.62	4.26	4.03
Exudation Pressure (psi) 241 289 361 R Value 12 25 37	Expansion Pressure (psi)	0.0	0.0	0.0
R Value 12 25 37	Exudation Pressure (psi)	241	289	361
	R Value	12	25	37

 PROJECT:
 BIA N35

 LOCATION:
 Sweetwater, AZ

 MATERIAL:
 Silty Sand

 SAMPLE SOURCE:
 B-66 @ 0'-5'

 JOB NO:
 65165267

 WORK ORDER NO:
 65165267

 LAB NO:
 11/07/16

SPECIMEN I. D.	А	В	с
Moisture Content	10.2%	9.8%	9.4%
Compaction Pressure (psi)	350	350	350
Specimen Height (inches)	2.54	2.49	2.50
Dry Density (pcf)	117.8	119.3	119.7
Horiz. Pres. @ 1000lbs (psi)	20.0	17.0	16.0
Horiz. Pres. @ 2000lbs (psi)	35.0	30.0	28.0
Displacement	4.26	4.14	4.08
Expansion Pressure (psi)	0.0	0.0	0.1
Exudation Pressure (psi)	149	401	598
R Value	68	72	74

 Project Number:
 69165033

 Service Date:
 10/17/16

 Report Date:
 10/19/16

 Task:
 10/19/16

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/14/2016

Lab No.: 16-0940

Results of Resistivity Analysis

Sample Number				
Sample Location	B-1	B-5	B-9	B-13
Sample Depth (ft.)	0.0-5.0	0.0-5.0	0.0-5.0	0.0-5.0
pH Analysis, AWWA 4500 H	9.92	8.35	8.61	9.07
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	303	330	2420	61
Chlorides, ASTM D 512, (mg/kg)	150	38	37	47
Resistivity, ASTM G 57, (ohm-cm)	1436	1746	1077	6693

Analzed By:

Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Project N35

 Project Number:
 69165033

 Service Date:
 10/17/16

 Report Date:
 10/19/16

 Task:
 10/19/16

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/14/2016

Lab No.: 16-0940

Results of Resistivity Analysis

Sample Number				
Sample Location	B-16	B-20	B-25	B-26
Sample Depth (ft.)	0.0-5.0	0.0-5.0	0.0-5.0	0.0-5.0
pH Analysis, AWWA 4500 H	8.99	8.98	9.58	9.26
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	52	33	85	47
Chlorides, AST, D 512, (mg/kg)	45	25	50	38
Resistivity, ASTM G 57, (ohm-cm)	6169	7372	3201	6305
· · · · · · · · · · · · · · · · · · ·				

Analzed By: Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-69

750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

N35

Project Number: 69165033 Service Date: 10/17/16 **Report Date:** 10/19/16 Task:

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/14/2016

Lab No.: 16-0940

Results of Resistivity Analysis

Sample Number	
Sample Location	B-27
Sample Depth (ft.)	0.0-5.0
pH Analysis, AWWA 4500 H	9.47
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	83
Chlorides, ASTM D 512, (mg/kg)	55
Resistivity, ASTM G 57, (ohm-cm)	3007

Analzed By: Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-70

Project

N35

Project Number: 69165033 Service Date: 10/24/16 **Report Date:** 10/25/16 Task:

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/20/2016

Lab No.: 16-0962

Results of Soluble Salt Analysis

Sample Number	
Sample Location	B-32
Sample Depth (ft.)	0.0-5.0
pH Analysis, AWWA 4500 H	8.37
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	69
Chlorides, ASTM D 512, (mg/kg)	38

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-71

Project

N35

 Project Number:
 69165033

 Service Date:
 10/24/16

 Report Date:
 10/25/16

 Task:
 10/25/16

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/20/2016

Project

Sweetwater, Arizona

N35

Lab No.: 16-0962

Results of Soluble Salt Analysis

Sample Number					
Sample Location	B-36	B-40	B-43	B-46	
Sample Depth (ft.)	0.0-5.0	0.0-5.0	0.0-5.0	0.0-5.0	
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	77	28	41	41	
Chlorides, ASTM D 512, (mg/kg)	25	50	40	35	

Analzed By:

Kurt D. Ergun

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-72

Project Number: 69165033 Service Date: 10/24/16 **Report Date:** 10/25/16 Task:

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/20/2016

Lab No.: 16-0962

Results of Soluble Salt Analysis

Sample Number					
Sample Location	B-50	B-55	B-58	B-60	
Sample Depth (ft.)	0.0-5.0	0.0-5.0	0.0-5.0	0.0-5.0	
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	77	28	41	41	
Chlorides, ASTM D 512, (mg/kg)	25	48	27	45	

Analzed By:

Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-73

raco 750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393

Project

Project Number: 69165033 Service Date: 10/24/16 **Report Date:** 10/25/16 Task:

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/20/2016

Lab No.: 16-0962

Results of Soluble Salt Analysis

Sample Number			
Sample Location	B-63	B-65	B-66
Sample Depth (ft.)	0.0-5.0	0.0-5.0	0.0-5.0
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	77	28	41
Chlorides, ASTM D 512, (mg/kg)	75	55	208

Analzed By:

Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-74

Project

Project Number: 69165033 Service Date: 10/24/16 **Report Date:** 10/25/16 Task:

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/20/2016

Lab No.: 16-0962

Results of Soluble Salt Analysis

Sample Number	
Sample Location	B-52
Sample Depth (ft.)	0.0-5.0
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	57
Chlorides, ASTM D 512, (mg/kg)	50

Analzed By: Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-75

Project

Project Number: 69165033 Service Date: 10/31/16 **Report Date:** 11/07/16 Task:

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Sweetwater, Arizona Date Received: 10/28/2016 Lab No.: 16-0988

Results of Resistivity Analysis

Project

N35

Sample Number				
Sample Location	RL-23+870	RL-24+370	RL-24+735	RL-26+010
Sample Depth (ft.)	0.5-1.5	0.5-1.5	0.5-1.5	0.05
pH Analysis, AWWA 4500 H	8.80	8.57	8.40	8.18
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	66	58	47	69
Chlorides, ASTM D 512, (mg/kg)	38	50	50	38
Resistivity, ASTM G 57, (ohm-cm)	6111	5820	5335	5529

Analzed By: Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Project Number: 69165033 Service Date: 10/31/16 **Report Date:** 11/07/16 Task:

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 10/28/2016

Lab No.: 16-0988

Results of Resistivity Analysis

Sample Number	
Sample Location	RL-30+320
Sample Depth (ft.)	0.5-1.5
pH Analysis, AWWA 4500 H	8.32
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	55
Chlorides, ASTM D 512, (mg/kg)	25
Resistivity, ASTM G 57, (ohm-cm)	7178

Analzed By: Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-77

Project

N35

 Project Number:
 69165033

 Service Date:
 11/12/16

 Report Date:
 11/13/16

 Task:
 11/12/16

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 11/10/2016

Project

Sweetwater, Arizona

N35

Lab No.: 16-0988

Sample Number				
Sample Location	RL-21+500	RL-24+370	RL-24+735	RL-26+010
Sample Depth (ft.)	0.5-1.5	0.5-1.5	0.5-1.5	0.05
pH Analysis, AWWA 4500 H	8.46	8.48	8.64	8.18
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	57	36	33	63
Chlorides, ASTM D 512, (mg/kg)	45	25	25	37
Resistivity, ASTM G 57, (ohm-cm)	3783	6499	7566	4850

Results of Resistivity Analysis

Analzed By:

Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Exhibit B-78

 Project Number:
 69165033

 Service Date:
 11/12/16

 Report Date:
 11/13/16

 Task:
 11/12/16

Client

United States of the Interior Gallup, New Mexico

Sample Submitted By: Terracon (69)

Date Received: 11/10/2016

Lab No.: 16-0988

Results of Resistivity Analysis

Sample Number	
Sample Location	RL-26+240
Sample Depth (ft.)	0.5-1.5
pH Analysis, AWWA 4500 H	9.13
Water Soluble Sulfate (SO4), ASTM D 516 (mg/kg)	55
Chlorides, ASTM D 512, (mg/kg)	38
Resistivity, ASTM G 57, (ohm-cm)	5675

Analzed By: Kurt D. Ergun

Chemist

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Project

Geotechnical and Pavement Design Report N35(8)1,2,4 and N5045(1)1,2,4 Sweetwater, Arizona February 13, 2017 Terracon Project No. 65165267

APPENDIX C ENGINEERING AND DESIGN CALCULATIONS

Resourceful
Responsive
Reliable

Design Traffic Analysis

Spreadsheet To Calculate Traffic for Pavement Design

- u Traffic Analysis is based upon procedures by AASHTO Design of Pavement Structures (1993)
- u Average Daily Traffic (ADT) is required along with annual growth rate
- Lane factor adjusts design lane traffic for 1, 2, 4 or 6 lanes
- u All ESAL (Truck) Factors are 18-kip equivalents per vehicle

Initial Data PROJECT DATA

Project name: BIA N35 and N5045 Location: Sweetwater, AZ

Terracon Project No. 65165267

STREET DATA

Street Name	N35 and N5045
Current Average Daily Traffic (ADT)	263
Design Period (years)	20
Annual Growth Rate (%)	2.00%
Number of Traffic Lanes (2, 4 or 6)	2

Equivalent 18-kip Axle Load Analysis

Vehicle Type	Current Daily Traffic	Annual No. of Vehicles	ESAL Factor	Growth Factor	Equivalent Axle Loads
Passenger Cars	257	93,805	0.0008	24.30	1,823
Buses	3	1,095	0.6806	24.30	18,108
Single Unit Trucks					
Panel and Pickup Trucks		0	0.0122	24.30	0
Other 2-Axle/4-Tire Trucks		0	0.0052	24.30	0
2-Axle/6-Tire		0	0.1890	24.30	0
3 or more Axle Trucks		0	0.1303	24.30	0
All Single Unit Trucks	0	0			0
Tractor Semi-Trailers					
3 Axle Tractor Semi-Trailers		0	0.8646	24.30	0
4 Axle Tractor Semi-Trailers		0	0.6560	24.30	0
5 + Tractor Semi-Trailers	3.0	1,095	2.3790	24.30	63,295
All Tractor Semi-Trailers	3	1,095			63,295
Double Trailer Combinations					
5 Axle Double Trailers		0	2.3187	24.30	0
6 + Axle Double Trailers		0	2.3187	24.30	0
All Double Trailer Combniations	0	0			0
Truck Trailer Combinations					
3 Axle Truck-Trailers		0	0.0152	24.30	0
4 Axle Truck-Trailers		0	0.0152	24.30	0
5 + Axle Truck Trailers		0	0.5317	24.30	0
All Truck-Trailer Combinations	0	0			0
All Vehicles	263.0	95,995			83,226

Traffic Summary

Equivalent Axle Loads (EAL's)	83,226
Lane Factor	0.50
Design Equivalent Axle Loads	41,613
Design Traffic Number (DTN)	6

Design Resilient Modulus Analysis

Project Data

PROJECT NAME, LOCATION and SEASONAL VARIATION FACTOR

Project Name: BIA N35 and N5045 Location: Sweetwater, AZ

Seasonal Variation Factor: 1.8

Laboratory Test Data

Boring No. Point ID	Boring Location	Depth (ft)	LL	PI	-#200	Laboratory R-Value	Correlated R-Value
B-1	N35	0 - 5	0	0	11		85.6
B-2	N35	0 - 5	34	12	54	8.5	29.6
B-3	N35	0 - 5	0	0	38	28.1	59.1
B-4	N35	0 - 5	0	0	19		76.7
B-5	N35	0 - 5	0	0	23		73.2
B-5	N35	5 - 6.5	0	0	16		80.2
B-6	N35	0 - 5	0	0	10		87.4
B-7	N5045	0 - 5	0	0	11		85.4
B-8	N5045	0 - 5	0	0	15	69	81.5
B-9	N35	0 - 5	0	0	8		89.6
B-9	N35	9 - 10.5	0	0	12		84.9
B-10	N35	0 - 5	0	0	34	56	62.4
B-11	N35	0 - 5	0	0	15		81.5
B-12	N35	0 - 5	0	0	14		82.3
B-13	N35	0 - 5	0	0	17		79.5
B-14	N35	0 - 5	0	0	16		80.3
B-15	N35	0 - 5	0	0	9		88.7
B-16	N35	0 - 5	0	0	33	64	63.4
B-17	N35	5 - 10	0	0	13		83.7
B-18	N35	0 - 5	0	0	15		80.8
B-19	N35	0 - 5	0	0	22	69	73.8
B-20	N35	0 - 5	0	0	15		81.2
B-21	N35	0 - 4	0	0	33	64	63.3
B-21	N35	4 - 12	0	0	22		74.3
B-22	N35	0 - 5	0	0	19		77.4
B-23	N35	0 - 5	0	0	23		72.5
B-24	N35	1 - 6	0	0	17		79.5
B-25	N35	0 - 5	0	0	39	66	58.0
B-26	N35	0 - 5	0	0	16		80.6
B-27	N35	0 - 5	24	7	63	60	31.8
B-28	N35	0 - 5	0	0	3		95.6
B-29	N35	0 - 5	0	0	16		80.3
B-30	N35	0 - 5	0	0	12		84.4

B-31	N35	0 - 5	0	0	18	66	78.4
B-32	N35	0 - 5	0	0	16		79.9
B-33	N35	0 - 5	0	0	14		82.5
B-34	N35	0 - 3	0	0	17	54	79.6
B-35	N35	0 - 5	0	0	12		85.1
B-36	N35	0 - 5	0	0	6		91.6
B-37	N35	0 - 5	0	0	19		76.7
B-38	N35	0 - 5	0	0	7		91.2
B-39	N35	0 - 5	0	0	18	59	78.2
B-40	N35	0 - 5	0	0	14		82.4
B-41	N35	0 - 5	0	0	6		91.5
B-42	N35	0 - 5	0	0	19		77.4
B-43	N35	0 - 5	0	0	19		76.6
B-44	N35	0 - 5	0	0	14	74	83.0
B-45	N35	0 - 5	0	0	11		85.3
B-46	N35	0 - 5	0	0	14		82.4
B-47	N35	0 - 5	0	0	24	71	71.5
B-48	N35	0 - 4	0	0	17		79.5
B-48	N35	4 - 9	0	0	32		64.7
B-49	N35	0 - 5	0	0	50		50.0
B-49	N35	8 - 10	0	0	30		65.8
B-50	N35	0 - 5	0	0	24	70	71.8
B-51	N35	0 - 5	0	0	4		94.1
B-52	N35	0 - 5	0	0	6		91.8
B-53	N35	0 - 5	0	0	4		95.1
B-54	N35	0 - 5	0	0	17	63	78.6
B-55	N35	0 - 5	0	0	7		90.9
B-56	N35	0 - 5	0	0	6		92.6
B-57	N35	0 - 5	0	0	12	77	85.2
B-58	N35	0 - 5	0	0	4		95.1
B-59	N35	0 - 5	0	0	11		85.7
B-60	N35	0 - 5	0	0	7		91.1
B-61	N35	0 - 5	0	0	21	42	74.3
B-62	N35	0 - 5	0	0	11		85.9
B-63	N35	0 - 5	0	0	9		88.5
B-64	N35	0 - 5	0	0	6		91.6
B-65	N35	0 - 5	0	0	18	27	77.6
B-66	N35	0 - 5	0	0	22	71	73.6

Mean R-Value and Modulus Calculations

Number of Laboratory Tested R-Values:	20 (Nt)
Average of Laboratory Tested R-Value Results:	57.93 (Rt)
Standard Deviation of Laboratory Tested R-Values:	17.99 (SDt)
Number of Correlated R-Value:	71 (Nc)
Average of Correlated R-Value Results:	78.94 (Rc)

sultante Inc

96

Standard Deviation of Correlated R-Values:12.49 (SDc)Adjusted Average of Correlated R-Values:
Calculation for Mean R-Value:76.45 (Rc)
$$R_{mean} =$$
 $N_t \cdot R_t \cdot SD_c^2 + N_c \cdot R_c \cdot SD_t^2$ $R_{mean} =$ $N_t \cdot SD_c^2 + N_c \cdot SD_t^2$ $R_{mean} =$ 74.2Seasonal Variation Factor for Project Location=
Design Resilient Modulus M_r (adjusted for SVF)=1.826,000psi

Flexible Pavement Design Analysis

Design Criteria PROJECT DATA

Pavement Designation	N35 and N5045
Design Life (years)	20
Equivalent Axle Loads/Day	6
Total EAL's	41,613
Seasonal Variation Factor	1.8
Reliability	75%
Overall Standard Deviation	0.35
SUBGRADE CONDITIONS	
Mean R-Value, R _{Mean}	74.2
Resilient Modulus MR (psi)	37,159
Design Modulus (psi)	26,000

SERVICEABILITY

-	
Initial Design Serviceability Index	4.0
Terminal Design Serviceability Index	2.4

LAYER COEFFICIENTS	Structural	Drainage
Asphalt Concrete Surface Course	0.44	N/A
Aggregate Base Course	0.14	0.92

Design Calculations

Target Structural Number SN: 1.05

	Recom	mended Pave				
		lr	Total	D		
Alternative	Asphalt	Aggregate	Mechanically		Structural Number	Structural Number
	Concrete	Base	Stabilized	Total		
	Surface	Course	Aggregate			
А	4.0			4.0	1.76	0.71
В	2.0	4.0		6.0	1.40	0.35
С	3.0	4.0		7.0	1.84	0.79

Pavement Life Cycle Cost Analysis

u Based upon ADOT Procedures and assumed maintenance schedules

u Initial costs are based upon bid tabs of regional ADOT projects or other local costs

u Life cycle costs are for comparative purposes only and are not for estimation of project costs

Project Data								
Project Name BIA N35						5%		
Project Number 65165267	Project Number 65165267			Analysis Period (yr.)				20
Roadway N35 and N504								
Pavement Alternatives:	L	A		В		С		D
Clear and Grub		1		1		1		1
Finish Grading		1		1		1		1
ABC (in.)		4		4		4		4
ARAC (in.)				2				3
AC (in.)		2				3		
Initial Costs (per lane mile)								
Clear and Grub		10,836		10,836		10,836		10,836
Finish Grading		3,731		3,731		3,731		3,731
ABC (in.)		31,258		31,258		31,258		31,258
ARAC (in.)		0		72,934		0		109,402
AC (in.)	_	65,050		0		97,574		0
Total Initial Cost (PW):	\$	110,875	\$	118,760	\$	143,400	\$	155,227
Maintenance Costs (per lane mile)								
Maintenance Cost		1,000		500		1,000		500
Number of Years Performed		8		8		8		8
Maintenance Cost (Chip Seal)		26,400		26,400		26,400		26,400
Number of Years Performed		2		2		3		3
Total Maintenance Cost (PW):	\$	60,800	\$	56,800	\$	87,200	\$	83,200
2" AC Overlay Rehabilitation and Scru	ub	Seal Cost	(pe	r lane mile)			
Year 10		75,886		75,886				
Total Rehabilitation Cost (PW):	\$	75,886	\$	75,886	\$	-	\$	-
Salvage Value (per lane mile)								
Percent of Initial Cost		35%		35%		35%		35%
Salvage Value at End of Life Cycle		38,806		41,566		50,190		54,329
Total Salvage Value (PW):	\$	14,626	\$	15,666	\$	18,916	\$	20,476
	-		_					
Life Cycle Costs (per lane mile)	•	440.07-	•	440 700	•	1.10.100	•	
Initial Costs	\$	110,875	\$	118,760	\$	143,400	\$	155,227
Maintenance & Rehabilitation Costs		136,686		132,686		87,200		83,200
Salvage Value		14,626		15,666		18,916		20,476
Total Present Worth		232,935	<u>,</u>	235,780		211,684		217,951
Average Annual Cost	\$	18,691	\$	18,920	\$	16,986	\$	17,489

Pavement Life Cycle Cost Analysis

u Based upon ADOT Procedures and assumed maintenance schedules

u Initial costs are based upon bid tabs of regional ADOT projects or other local costs

u Life cycle costs are for comparative purposes only and are not for estimation of project costs

Project Data								
Project Name BIA N35					Int	erest Rate		5%
Project Number 65165267				Analy	vsis	Period (yr.)		20
Roadway N35 and N504				-				
Pavement Alternatives:		Е		F				
Clear and Grub		1		1				
Finish Grading		1		1				
ABC (in.)								
ARAC (in.)				4				
AC (in.)		4						
Initial Costs (per lane mile)								
Clear and Grub		10,836		10,836		0		0
Finish Grading		3,731		3,731		0		0
ABC (in.)		0		0		0		0
ARAC (in.)		0		145,869		0		0
AC (in.)		130,099		0		0		0
Total Initial Cost (PW):	\$	144,667	\$	160,436	\$	-	\$	-
Maintenance Costs (per lane mile)								
Maintenance Cost		1,000		500		1,000		500
Number of Years Performed		8		8				
Maintenance Cost (Chip Seal)		26,400		26,400		26,400		26,400
Number of Years Performed		3		3				
Total Maintenance Cost (PW):	\$	87,200	\$	83,200	\$	-	\$	-
2" AC Overlay Rehabilitation and Scru	ub S	Seal Cost	(pe	r lane mile)			
Year 10								
Total Rehabilitation Cost (PW):	\$	-	\$	-	\$	-	\$	-
Salvage Value (per lane mile)								
Percent of Initial Cost		35%		35%		35%		35%
Salvage Value at End of Life Cycle		50,633		56,153		0		0
Total Salvage Value (PW):	\$	19,083	\$	21,163	\$	-	\$	-
Life Cycle Coete (ner lane mile)								
Life Cycle Costs (per lane mile)	¢	111 667	¢	160 426	¢		¢	
Maintenance & Pohabilitation Costs	φ	87 200	φ	82 200	φ	-	φ	-
		10 092		21 162		0		0
Total Present Worth		212 784		21,103		0		0
Average Appual Cost	\$	17 074	\$	17 852	\$	-	\$	- 0
	Ψ	· · , • · Ŧ	Ψ	11,002	Ψ		Ψ	